ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Что такое резина: из чего делают, сферы применения. Резины общего и специального назначения

Который и определяет основные свойства резинового материала. Для улучшения физико-механических свойств каучуков вводятся различные добавки (ингредиенты).
Таким образом, резина состоит из каучука и ингредиентов, рассмотренных ниже.

  • Вулканизирующие вещества (агенты) участвуют в образовании пространственно-сеточной структуры вулканизата.

Обычно в качестве таких веществ применяют серу и селен, для некоторых каучуков перекиси. Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения.
Ускорители процесса вулканизации; полисульфиды, оксиды свинца, магния и другие влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов. Ускорители проявляют свою наибольшую активность в присутствии оксидов некоторых металлов, называемых поэтому в составе резиновой смеси активаторами.

  • Противостарители (антиоксиданты) замедляют процесс старения резины,который ведет к ухудшению ее эксплуатационных свойств.

Существуют противостарители химического и физического действия. Действие первыхзаключается в том, что они задерживают окисление каучука в результате окисления их самих или за счет разрушения образующихся перекисей каучука.
Физические Противостарители образуют поверхностные защитные пленки, они применяются реже.

  • Мягчители (пластификаторы) облегчают переработку резиновой смеси,увеличивают эластические свойства каучука, повышают морозостойкость резины.

В качестве мягчителей вводят парафин, вазелин, стеариновую кислоту, битумы, дибутилфталат,растительные масла.

  • Наполнители по воздействию на каучук подразделяют на активные (усиливающие) и неактивные (инертные).

Активные наполнители (углеродистая сажа и белая сажа) повышают механические свойства резин: прочность, сопротивление истиранию, твердость.
Неактивные наполнители (мел, тальк, барит) вводятся для удешевления стоимости резины.

Часто в состав резиновой смеси вводят регенерат - продукт переработки старых резиновых изделий и отходов резинового Производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.

  • Красители минеральные или органические вводят для окраски резин.

Некоторые красящие вещества (белые, желтые, зеленые) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.

Свойства резины

Подавляющее большинство каучуков является непредельными, высокополимерными (карбоцепными) соединениями с двойной химической связью между углеродными атомами в элементарных звеньях макромолекулы. (Некоторые каучуки получают на основе насыщенных линейных полимеров.)
Молекулярная масса каучуков исчисляется в 400 000-450 000. Структура макромолекул линейная или слаборазветвленная и состоит из отдельных звеньев, которые имеют тенденцию свернуться в клубок, занять минимальный объем, но этому препятствуют силы межмолекулярного взаимодействия, поэтому молекулы каучука извилистые (зигзагообразные). Такая форма молекул и является причиной исключительно высокой эластичности каучука (под небольшой нагрузкой происходит выпрямление молекул, изменяется их конформация).

Вулканизация

По свойствам каучуки напоминают термопластичные полимеры. Наличие в молекулах каучука непредельных связей позволяет при определенных условиях переводить его в термостабильное состояние. Для этого по месту двойной связи присоединяется двухвалентная сера (или другое вещество), которая образует в поперечном направлении как бы «мостики» между нитевидными молекулами каучука, в результате чего получается пространственно-сетчатая структура, присущая резине (вулканизату). Процесс химического взаимодействия каучуков с серой в технике называется вулканизацией .

Многие каучуки растворимы в растворителях, резины только набухают в них и более стойки к химикатам.
езины имеют более высокую теплостойкость (НК размягчается при температуре 90 °С, резина работает при температуре свыше 100°С).
На изменение свойств резины влияет взаимодействие каучука с кислородом, поэтому при вулканизации одновременно происходят два процесса: структурирование под действием вулканизующего агента и деструкция под влиянием окисления и температуры.
Преобладание того или иного процесса сказывается на свойствах вулканизата. Это особенно характерно для резин из НК.
Для синтетических каучуков (СК) процесс вулканизации дополняется полимеризацией: под действием кислорода и температуры образуются межмолекулярные углеродистые связи, упрочняющие термостабильную структуру, что дает повышение прочности.

Термическая устойчивость вулканизата зависит от характера образующихся в процессе вулканизации связей. Наиболее прочные, а следовательно, термоустойчивые связи -С-С-, наименьшая прочность у полисульфидной связи -С-C-С.

Современная физическая теория упрочнения каучука объясняет повышение его прочности наличием сил связи (адсорбции и адгезии), возникающих между каучуком и наполнителем, а также образованием непрерывной цепочно-сетчатой структуры наполнителя вследствие взаимодействия между частицами наполнителя.
Возможно и химическое взаимодействие каучука с наполнителем.

Классификация резины по назначению

По назначению резины подразделяют на резины общего назначения и резины специального назначения (специальные).

  • Резины общего назначения

К группе резин общего назначения относят вулканизаты неполярных каучуков - НК, СКБ, СКС, СКИ.

Н К - натуральный каучук является полимером изопрена (С5Н8)n. Он растворяется в жирных и ароматических растворителях (бензине, бензоле, хлороформе, сероуглероде и др.), образуя вязкие растворы, применяемые в качестве клеев. При нагреве выше 80-100 °С каучук становится пластичным и при 200 °С начинает разлагаться. При температуре -70 °С НК становится хрупким. Обычно НК аморфен. Однако при длительном хранении возможна его кристаллизация.

СКБ - синтетический каучук бутадиеновый (дивинильный) получают по методу С. В. Лебедева. Формула полибутадиена (С4Н6)n. Он является некристаллизующимся каучуком и имеет низкий предел прочности при растяжении, поэтому в резину на его основе необходимо вводить усиливающие наполнители. Морозостойкость бутадиенового каучука невысокая (от -40 до -45 °С).
СКС - бутадиенстирольный каучук получается при совместной полимеризацией бутадиена (С4Н6) и стирола (СН2=СН-С6Н5). Это самый распространенный каучук общего назначения.

СКИ - синтетический каучук изопреновый - продукт полимеризации изопрена (С5Н8). Получение СКИ стало возможным в связи с применением новых видов катализаторов. По строению, химическим и физико-механическим свойствам СКИ близок к натуральному каучуку. Промышленностью выпускаются каучуки СКИ-3 и СКИ-ЗП, наиболее близкие по свойствам к НК; каучук СКИ-ЗД, предназначенный для получения электроизоляционных резин, СКИ-ЗВ - для вакуумной техники.

Резины общего назначения могут работать в среде воды, воздуха, слабых растворов кислот и щелочей. Интервал рабочих температур составляет от -35 до 130 °С. Из этих резин изготовляют шины, ремни, рукава, конвейерные ленты, изоляцию кабелей, различные резинотехнические изделия.

Резины специального назначения

Специальные резины подразделяют на несколько видов: маслобензостойкие, теплостойкие, светоозоностойкие, износостойкие, электротехнические, стойкие к гидравлическим жидкостям.

Маслобензостойкие резины получают на основе каучуков хлоропренового (наирит), СКН и тиокола.
Наирит является отечественным хлоропреновым каучуком. Хлоропрену соответствует формула СН2==ССI-СН=СН2.
Вулканизация может проводиться термообработкой даже без серы, так как под действием температуры каучук переходит в термостабильное состояние.
Резины на основе наирита обладают высокой эластичностью, вибростойкостью, озоностойкостью, устойчивы к действию топлива и масел, хорошо сопротивляются тепловому старению. (Окисление каучука замедляется экранирующим действием хлора на двойные связи.)
По температуроустойчивости и морозостойкости (от -35 до -40 °С) они уступают как НК, так и другим СК.
Электроизоляционные свойства резины на основе полярного наирита ниже, чем у резины на основе неполярных каучуков.
(За рубежом полихлоропреновый каучук выпускается под названием неопрен, пербунан-С и др.).

СКН - бутадиеннитрильный каучук - продукт совместной полимеризации бутадиена с нитрилом акриловой кислоты -СН2-СН =СН-СН2-СН2-СНСN-
Резины на основе СКН обладают высокой прочностью ((в = 35 МПа), хорошо сопротивляются истиранию, но по эластичности уступают резинам на основе НК, превосходят их по стойкости к старению и действию разбавленных кислот и щелочей. Резины могут работать в среде бензина, топлива, масел в интервале температур от -30 до 130 °С.
Резины на основе СКН применяют для производства ремней, конвейерных лент, рукавов, маслобензостойких резиновых деталей (уплотнительные прокладки,манжеты и т. п.).

Тиоколы – торговое название полисульфидных каучуков.
Из смеси каучука с серой, наполнителями и другими веществами формуют нужные изделия и подвергают их нагреванию. При этих условиях атомы серы присоединяются к двойным связям макромолекул каучука и «сшивают» их, образуя дисульфидные «мостики». В результате образуется гигантская молекула, имеющая три измерения в пространстве - как бы длину, ширину и толщину. Полимер приобретает пространственную структуру. Если к каучуку добавить больше серы, чем нужно для образования резины, то при вулканизации линейные молекулы окажутся «сшитыми» в очень многих местах, и материал утратит эластичность, станет твёрдым - получится эбонит. До появления современных пластмасс эбонит считался одним из лучших изоляторов.

Полисульфидный каучук, или тиокол, образуется при взаимодействии галоидопроизводных углеводородов с многосернистыми соединениями щелочных металлов:

СН2-СН2-S2-S2- ...
Тиокол вулканизуется перекисями. Присутствие в основной цепи макромолекулы серы придает каучуку полярность, вследствие чего он становится устойчивым к топливу и маслам, к действию кислорода, озона, солнечного света. Сера также сообщает тиоколу высокую газонепроницаемость (выше, чем у НК), поэтому тиокол - хороший герметизирующий материал.

Механические свойства резины на основе тиокола невысокие.
Эластичность резин сохраняется при температуре от -40 до -60 °С.
Теплостойкость не превышает 60-70 °С. Тиоколы новых марок работают при температуре до 130 °С.

Акрилатные каучуки - сополимеры эфиров акриловой (или метакриловой)кислоты с акрилонитрилом и другими полярными мономерами - можно отнести к маслобензостойким каучукам.
Каучуки выпускают марок БАК-12, БАКХ-7, ЭАХ.
Для получения высокопрочных резин вводят усиливающие наполнители.
Достоинством акрилатных резин является стойкость к действию серосодержащих масел при высоких температурах; их широко применяют в автомобилестроении.Они стойки к действию кислорода, достаточно теплостойки, обладают адгезией к полимерам и металлам.
Недостатками БАК являются малая эластичность,низкая морозостойкость, невысокая стойкость к воздействию; горячей воды и пара.

Износостойкие резины получают на основе полиуретановых каучуков СКУ.
Полиуретановые каучуки обладают высокой прочностью, эластичностью, сопротивлением истиранию, маслобензостойкостью. В структуре каучука нет ненасыщенных связей, поэтому он стоек к кислороду и озону, его газонепроницаемость в 10-20 раз выше, чем газопроницаемость НК.
Рабочие температуры резин на его основе составляют от -30 до 130°С.

Уретановые резины стойки к воздействию радиации. Зарубежные названия уретановых каучуков - , вулколлан, адипрен, джентан, урепан.
Резины на основе СКУ применяют для автомобильных шин, конвейерных лент, обкладки труб и желобов для транспортирования абразивных материалов, обуви и др.

МЕХАНИЧЕСКИЕ СВОЙСТВА РЕЗИН И КАУЧУКОВ

Общие понятия

Механические свойства каучуков и резин могут быть охарактеризованы комплексом свойств.
К особенностям механических свойств каучуков и резин следует отнести:

  • высокоэластический характер деформации каучуков;
  • зависимость деформаций от их скорости и продолжительности действия деформирующего усилия, что проявляется в релаксационных процессах и гистерезисных явлениях;
  • зависимость механических свойств каучуков от их предварительной обработки, температуры и воздействия различных немеханических факторов (света, озона, тепла и др.).

Различают деформационно-прочностные, фрикционные и другие специфические свойства каучуков и резин.

К основным деформационно-прочностным свойствам относятся: пластические и эластические свойства, прочность при растяжении,относительное удлинение при разрыве, остаточное удлинение после разрыва,условные напряжения при заданном удлинении, условно-равновесный модуль,модуль эластичности, гистерезисные потери, сопротивление раздиру, твердость.

К фрикционным свойствам резин относится износостойкость, характеризующая сопротивление резин разрушению при трении, а также коэффициент трения.

К специфическим свойствам резин относятся, например, температура хрупкости, морозостойкость, теплостойкость, сопротивление старению.

Очень важным свойством резин является сопротивление старению (сохранение механических свойств) после воздействия света, озона, тепла и других факторов.

Механические свойства резин определяют в статических условиях, т. е. при постоянных нагрузках и деформациях, при относительно небольших скоростях нагружения (например, при испытании на разрыв), а также в динамических условиях, например, при многократных деформациях растяжения, сжатия, изгиба или сдвига. При этом особенно часто резины испытывают на усталостную выносливость и теплообразование при сжатии.

Усталостная выносливость характеризуется числом циклов деформаций, которое выдерживает резина до разрушения. Для сокращения продолжительности определения усталостной выносливости испытания проводят иногда в условиях концентрации напряжений, создаваемых путем дозированного прокола или применения образцов с канавкой.

Теплообразование при многократных деформациях сжатия определяется по изменению температуры образца резины в процессе испытания в заданном режиме (при заданном сжатии и заданной частоте деформаций).

Пластические и эластические свойства

Пластичностью называется способность материала легко деформироваться и сохранять форму после снятия деформирующей нагрузки. Иными словами, пластичность - это способность материала к необратимым деформациям.

Эластичностью называется способность материала легко деформироваться и восстанавливать свою первоначальную форму и размеры после снятия деформирующей нагрузки, т. е. способность к значительным обратимым деформациям.

Эластическими деформациями , в отличие от упругих, называются такие обратимые деформации, которые характеризуются значительной величиной при относительно малых деформирующих усилиях (низкое значение модуля упругости).

Пластические и эластические свойства каучука проявляются одновременно; в зависимости от предшествующей обработки каучука каждое из них проявляется в большей или меньшей степени. Пластичность невулканизованного каучука постепенно снижается при вулканизации, а эластичность возрастает.
В зависимости от степени вулканизации соотношение этих свойств каучука постепенно изменяется. Для невулканизованных каучуков более характерным свойством является пластичность, а вулканизованные каучуки отличаются высокой эластичностью. Но при деформациях невулканизованного каучука наблюдается также частичное восстановление первоначальных размеров и формы,т. е. наблюдается некоторая эластичность, а при деформациях резины можно наблюдать некоторые неисчезающие остаточные деформации.

Упругая деформация практически устанавливается мгновенно при приложении деформирующего усилия и также мгновенно исчезает после снятия нагрузки; обычно она составляет доли процента от общей деформации. Этот вид деформации обусловлен небольшим смещением атомов, изменением межатомных и межмолекулярных расстояний и небольшим изменением валентных углов.

Высокоэластическая деформация резин увеличивается во времени по мере действия деформирующей силы и достигает постепенно некоторого предельного (условно-равновесного) значения. Она так же, как и упругая деформация, обратима; при снятии нагрузки высокоэластическая деформация постепенно уменьшается, что приводит к эластическому восстановлению деформированного образца.
Высокоэластическая деформация, в отличие от упругой,характеризуется меньшей скоростью, так как связана с конформационными изменениями макромолекул каучука под действием внешней силы. При этом происходит частичное распрямление и ориентация макромолекул в направлении растяжения. Эти изменения не сопровождаются существенными нарушениями межатомных и межмолекулярных расстояний и происходят легко при небольших усилиях. После прекращения действия деформирующей силы вследствие тепловогодвижения происходит дезориентация молекул и восстановление размеров образца.
Специфическая особенность механических свойств каучуков и резин связана с высокоэластической деформацией.

Пластическая деформация непрерывно возрастает при нагружении и полностью сохраняется при снятии нагрузки. Она характерна для невулканизованного каучука и резиновых смесей и связана с необратимым перемещением макромолекул друг относительно друга.

Скольжение молекул у вулканизованного каучука сильно затруднено наличием прочных связей между молекулами, и поэтому вулканизаты, не содержащие наполнители, почти полностью восстанавливаются после прекращения действия внешней силы.
Наблюдаемые при испытании наполненных резин неисчезающие деформации являются следствием нарушения межмолекулярных связей, а также следствием нарушения связей между каучуком и компонентами, введенными в нею, например вследствие отрыва частиц ингредиентов от каучука. Неисчезающие остаточные деформации часто являются кажущимися вследствие малой скорости эластического восстановления, т. е. оказываются практически исчезающими в течение некоторого достаточно продолжительного времени.

Твердость резины

Твердость резины характеризуется сопротивлением вдавливанию в резину металлической иглы или шарика (индентора) под действием усилия сжатой пружины или под действием груза.

Для определения твердости резины применяются различные твердомеры.
Часто для определения твердости резины используется твердомер ТМ-2 (типа Шора), который имеет притупленную иглу, связанную с пружиной, находящейся внутри прибора.
Твердость определяется глубиной вдавливания иглы в образец под действием сжатой пружины при соприкосновении плоскости основания прибора с поверхностью образца (ГОСТ 263-75). Вдавливание иглы вызывает пропорциональное перемещение стрелки по шкале прибора.
Максимальная твердость, соответствующая твердости стекла или металла, равна 100 условным единицам.
Резина в зависимости от состава и степени вулканизации имеет твердость в пределах от 40 до 90 условных единиц.
С увеличением содержания наполнителей и увеличением продолжительности вулканизации твердость повышается; мягчители (масла) снижают твердость резины.

Теплостойкость

О стабильности механических свойств резины при повышенных температурах судят по показателю ее теплостойкости. Испытания на теплостойкость производят при повышенной температуре (70 °С и выше) после прогрева образцов при температуре испытания в течение не более 15 мин (во избежание необратимых изменений) с последующим сопоставлением полученных результатов с результатами испытаний при нормальных условиях (23±2°С).

Количественной характеристикой теплостойкости эластомеров служит коэффициент теплостойкости, равный отношению значений прочности при растяжении, относительного удлинения при разрыве и других показателей, определенных при повышенной температуре, к соответствующим показателям, определенным при нормальных условиях. Чем ниже показатели при повышенной температуре по сравнению с показателями при нормальных условиях, тем ниже коэффициент теплостойкости.

Полярные каучуки обладают пониженной теплостойкостью.
Наполнители значительно повышают теплостойкость резин.

Износостойкость

Основным показателем износостойкости является истираемость и сопротивление истиранию, которые определяются в условиях качения с проскальзыванием (ГОСТ 12251-77) или в условиях скольжения по истирающей поверхности, обычно, как и в предыдущем случае, по шлифовальной шкурке (ГОСТ 426-77).
Истираемость (определяется как отношение уменьшения объема образца при истирании к работе, затраченной на истирание, и выражается в м3/МДж [см3/(кВт(ч)].
Сопротивление истиранию (определяется как отношение затраченной работы на истирание к уменьшению объема образца при истирании и выражается в МДж/м3 [см3/(кВт(ч)].

Истирание кольцевых образцов при качении с проскальзыванием более соответствует условиям износа протекторов шин при эксплуатации и поэтому применяется при испытаниям на износостойкость протекторных резин.

Теплообразование при многократном сжатии

Теплообразование резины при многократном сжатии цилиндрических образцови характеризуется температурой, развивающейся в образце вследствие внутреннего трения (или повышением температуры при испытании).

Морозостойкость резины

Морозостойкость-способность резины сохранять высокоэластические свойства при пониженных температурах. Свойства резин при пониженных температурах характеризуются коэффициентом морозостойкости при растяжении, температурой хрупкости и температурой механического стеклования.

Коэффициент морозостойкости при растяжении (ГОСТ 408-66) представляет собой отношение удлинения образца при пониженной температуре к удлинению его (равному 100%) при температуре 23±2°С под действием той же нагрузки.

Резина считается морозостойкой при данной температуре, если коэффициент морозостойкости выше 0,1.

Температура хрупкости Тхр-максимальная минусовая температура, при которой консольно закрепленный образец резины разрушается или дает трещину при изгибе под действием удара! ГОСТ 7912-74). Температура хрупкости резин зависит от полярности и гибкости макромолекул, с повышением гибкости молекулярных цепей она понижается.

Температурой механического стеклования называется температура, при которой каучук или резина теряют способность к высокоэластическим деформациям.
По ГОСТ 12254-66 этот показатель определяется на образцах,замороженных при температуре ниже температуры стеклования. Образец резины цилиндрической формы нагружают (после предварительного замораживания) и затем медленно размораживают со скоростью 1 °С в минуту и находят температуру, при которой деформация образца начинает резко возрастать.

Сопротивление старению и действию агрессивных сред

Старением называется необратимое изменение свойств каучука или резины под действием тепла, света, кислорода, воздуха, озона или агрессивных сред, т.е. преимущественно немеханических факторов.
Старение активируется, если резина одновременно подвергается воздействию механических нагрузок.

Испытания на старение производят, выдерживая резину в различных условиях (на открытом воздухе, в кислороде или воздух при повышенной температуре; в среде озона или при воздействии света и озона).
При атмосферном старении на открытом воздухе или термическом старении в среде горячего воздуха (ГОСТ 9.024-74) результат испытания оценивают коэффициентом старения, который представляет отношение изменения показателей каких-либо свойств, чаще всего предела прочности и относительного удлинения при разрыве к соответствующим показателям до старения. Чем меньше изменения свойств при старении и коэффициент старения, тем выше сопротивление резины старению.

Сопротивление действию различных сред (масел, щелочей, кислот и др.) оценивается по изменению свойств - предела прочности при растяжении и относительного удлинения при разрыве в 1этих средах.
Оно характеризуется коэффициентом, представляющим отношение показателя после воздействия агрессивной среды к соответствующему показателю до ее воздействия.

ДОЛГОВЕЧНОСТЬ И УСТАЛОСТНАЯ ВЫНОСЛИВОСТЬ РЕЗИН

  • Долговечность резин в условиях статической деформации

Прочность любого твердого тела понижается с увеличением продолжительности действия напряжения и поэтому разрушающая нагрузка не является константой твердого тела.
Разрушающая нагрузка - условная мера прочности только при строго определенных скорости деформации и температуре. Снижение прочности материала, находящегося в статически напряженном состоянии, называется статической усталостью. Продолжительность пребывания тела в напряженном состоянии от момента нагружения до разрушения называется долговечностью материала под нагрузкой.
При температурах ниже ТХР полимеры ведут себя подобно хрупким твердым телам.

  • Долговечность резины в условиях динамических деформаций

Снижение прочности материала вследствие многократных деформаций называется динамической усталостью или утомлением.

Сопротивление резин утомлению или динамическая выносливость выражается числом циклов деформации, необходимым для разрушения образца.
Максимальное напряжение в цикле деформации, соответствующее разрушению образца в условиях многократных деформаций, называется усталостной прочностью, а время, необходимое для разрушения резины в условиях многократных деформаций, - динамической долговечностью.

Наиболее распространенным режимом испытаний на многократное растяжение является режим постоянных максимальных удлинений, который осуществляется на машине МРС-2. Это испытание проводится при постоянной амплитуде и заданной частоте (250 и 500 цикл/мин), а также при постоянном максимальном и среднем значениях деформации.

Влияние структуры и состава резин на ее долговечность.
Как правило, резина имеет высокую усталостную выносливость, если она обладает высокой прочностью, малым внутренним трением и высокой химической стойкостью. Влияние структуры или состава резины на эти свойства различно. Влияние типа каучука, характера вулканизационной сетки наполнителей, пластификаторов,антиоксидантов также неоднозначно.
Методы испытания долговечности выбираются с учетом реальных условий эксплуатации резины, видов и условий деформаций, имеющих решающее значение.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

  • Ю. М. Лахтин “Материаловедение”, 1990, Москва, "Машиностроение”
  • Н. В. Белозеров “Технология резины”, 1979, Москва, “Химия”
  • Ф. А. Гарифуллин, Ф. Ф. Ибляминов “Конструкционные резины и методы определения их механических свойств”, Казань, 2000
  • Обратная связь Автору

В машиностроении часто используется резина - слож­ная смесь, в которой основным компонентом является каучук. Резина обладает высокой эластичностью, кото­рая сочетается с рядом других важнейших технических свойств: высоким сопротивлением разрыву и истиранию, газо- и водонепроницаемостью, химической стойкостью, высокими электроизоляционными свойствами и малым удельным весом. К недостаткам резины относятся ее не­высокая теплостойкость и малая стойкость к действию минеральных масел (за исключением специальной маслостойкой резины).

Применение резины . Резиновые изделия находят са­мое широкое применение во всех отраслях народного хозяйства. Ассортимент резиновых изделий исчисляется в настоящее время десятками тысяч наименований. Основное применение резина находит в производстве шин.

Кроме шин, в автомобиле насчитывается около 200 самых различных резиновых деталей: шланги, ремни, прокладки, втулки, муфты, буфера, мембраны, манжеты и т. д.

Резина обладает высокими электроизоляционными свойствами, поэтому ее широко применяют для изоля­ции кабелей, проводов, магнето, защитных средств - перчаток, галош, ковриков.

Состав резины. В состав резины входят каучук, реге­нерат, вулканизирующие вещества, ускорители вулкани­зации, наполнители, мягчители, противостарители, кра­сители. Каучук натуральный и синтетический является основным сырьем для получения резиновых изделий. В настоящее время резиновые материалы преимуществен­но производятся из синтетического каучука, который до­бывается из этилового спирта, нефти, природного газа и других веществ.

Регенерат - пластичный материал, получаемый пу­тем переработки старых резиновых изделий и отходов резинового производства. Применение регенерата умень­шает содержание каучука в резиновой смеси, снижает себестоимость резиновых изделий и несколько повыша­ет их пластичность.

Основным вулканизирующим веществом является се­ра. Изменяя количество серы в составе резиновых сме­сей, можно получить резину, обладающую различными степенями эластичности. Процесс химического соедине­ния каучука с серой при нагревании называется вулка­низацией . При получении эластичных резин сера вводит­ся в количестве 1-4% от массы каучука. Резина, со­держащая 25-35% серы, представляет собой твердый материал, называемый эбонитом. Для сокращения про­должительности и температуры вулканизации вводятся в небольшом количестве (0,5-2,5%) ускорители (каптакс, окись свинца и т. д.).

Наполнители бывают активные, неактивные и спе­циальные. К активным наполнителям (усилителям) от­носятся сажа, цинковые белила, каолин и другие веще­ства, повышающие механические свойства резины (проч­ность на разрыв и сопротивление истиранию). Сажа яв­ляется основным наполнителем для получения прочной резины, обладающей высоким сопротивлением истира­нию. К неактивным наполнителям относятся тальк, мел, инфузорная земля и др. Их вводят с целью увеличения объема и удешевления резины. К специальным напол­нителям относятся каолин и асбест, придающие резине химическую стойкость, и диатомит, повышающий элект­роизоляционные свойства резины.

Мягчители (пластификаторы) придают резиновой смеси мягкость, пластичность и облегчают ее обработку.

Противостарители - это вещества, предохраняющие резину от старения.

Основные виды резин . Армированной называют рези­ну, внутрь которой введены прокладки из металлической сетки или спирали с целью повышения прочности и гиб­кости, что особенно важно для таких изделий, как авто­мобильные шины, приводные ремни, ленты транспорте­ров, трубопроводы и т. д. При ее приготовлении в рези­новую смесь закладывают металлическую сетку, покры­тую слоем латуни и обмазанную клеем, и подвергают одновременному прессованию и вулканизации.

Пористые резины по характеру пор и способу полу­чения разделяются на губчатые - с крупными открытыми порами, однородные ячеистые - с закрытыми порами и микропористые. Способ их получения основан на способности каучука абсорбировать газы и на диффузии тазов через каучук. Пористая резина применяется при изготовлении амортизаторов, сидений, оконных прокла­док, протекторных слоев покрышек.

Твердая резина, или эбонит, имеет темно-коричневую или красную окраску, теплостойкость от 50 до 90°С, вы­держивает высокое пробивное напряжение (25- 60 кВ/мин).

Резиной называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками.

Резина отличается от других материалов высокими эластическими свойствами, которые присущи каучуку - главному исходному компоненту резины. Она способна к очень большим деформациям (относительное удлинение достигает 1000%), которые почти полностью обратимы.

Особенностью резины является ее малая сжимаемость, релаксационный характер деформации, при комнатной температуре время релаксации может составлять-10 ~ 4 с и более, высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.

Состав и классификация резин. Основой резины является каучук натуральный (НК) или синтетический (СК), который и определяет основные свойства резинового материала. Для улучшения физико-механических свойств каучуков вводятся различные добавки (серу и селем).

Противостарители (антиоксиданты) замедляют процесс старения резины, который ведет к ухудшению ее эксплуатационных свойств. Существуют противостарители химического (применяются альдольнеозон) и физического действия (парафин, воск) образуют поверхностные защитные пленки.

Мягчители (пластификаторы) облегчают переработку резиновой смеси, увеличивают эластические свойства каучука, повышают морозостойкость резины. В качестве мягчителей вводят парафин, вазелин, стеариновую кислоту, битумы, дибутилфталат, растительные масла. Количество мягчителей 8 - 30% от массы каучука.

Наполнители по воздействию на каучук подразделяют на активные (усиливающие) и неактивные (инертные). Усиливающие наполнители (углеродистая сажа и белая сажа - кремнекислота, окись цинка и др.) повышают механические свойства резин: прочность, сопротивление истиранию, твердость. Неактивные наполнители (мел, тальк, барит) вводятся для удешевления стоимости резины.

Часто в состав резиновой смеси вводят регенерат - продукт переработки старых резиновых изделий и отходов резинового производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.



По назначению различают следующие основные группы резины:

Общего назначения и специального назначения, в том числе:

Теплостойкие,

Морозостойкие,

Маслобензостойкие,

Стойкие к действию химически агрессивных сред, в том числе стойкие к гидравлическим жидкостям,

Диэлектрические,

Электропроводящие,

Магнитные,

Огнестойкие,

Радиационностойкие,

Вакуумные,

Фрикционные (износостойкие*),

Пищегого и медицинского назначения,

для условий тропического и другого климата

По типам:

Пористые, или губчатые

Цветные и прозрачные резины.

Физико-механические свойства резин.

Износостойкость - основным показателем износостойкости является истираемость и сопротивление истиранию. Истираемость (определяется как отношение уменьшения объема образца при истирании к работе, затраченной на истирание. Сопротивление истиранию (определяется как отношение затраченной работы на истирание к уменьшению объема образца при истирании.

Усталостно-прочностные свойства резин определяются их утомлением, когда под действием механических напряжений происходит разрушение. Утомлению способствует также воздействие света, теплоты, агрессивных сред,что вызывают старение. Число циклов нагружения, которое выдерживает, не разрушаясь, образец, называется усталостной выносливостью. Почти не подвержены озонному растрескиванию резины на основе бутилкаучука и хлоропренового каучука. Для обеспечения высокой усталостной прочности необходимы высокая прочность, малое внутреннее трение и высокая химическая стойкость резины. При повышенных температурах (150°С) органические резины теряют прочность после 1 -10 ч нагревания, резины на СКТ могут при этой температуре работать длительно. Прочность силоксановой резины при комнатной температуре меньше, чем у органических резин, однако при 200°С прочности одинаковы, а при температуре 250 - 300°С прочность даже выше. Воздействие на резину отрицательных температур вызывает снижение и даже полную утрату высокоэластических свойств, переход в стеклообразное состояние и возрастание ее жесткости в тысячи и десятки тысяч раз.

Старение резины наблюдается при хранении и эксплуатации резиновых изделий под воздействием немеханических факторов. Испытание на старение проводят как в естественных, так и в искусственных условиях. Процесс старения по-разному сказывается на резинах.

Виды резиновых смесей

Натуральный (НК) и синтетические изопреновые (СКИ). Плотность каучуков 910-920кг/м 3 , предел прочности 24-34МПа, относительное удлинение 600-800%. Изопреновые каучуки применяются в производстве конвейерных лент, формовых изделий, губчатых медицинских и других изделий.

Бутадиеновый (СКД). Плотность каучука 900-920кг/м 3 , предел прочности 13-16МПа, относительное удлинение 500-600% . СКД обладает высокими морозостойкостью и сопротивлением истиранию. Резиновые смеси на основе СКД плохо перерабатываются экструзией и каландрованием. Смеси на основе СКД характеризуются низкой клейкостью. СКД уступает НК по прочности вулканизатов.

Бутилкаучук (БК) обладает стойкостью к кислороду, озону и другим химическим реагентам. Каучук обладает высоким сопротивлением истиранию и высокими диэлектрическими характеристиками. По температуростойкости уступает другим резинам,. Основным физическим свойством БК является необычно высокая газо- и влагонепроницаемость. Камера шины из этого материала удерживает воздух в 10 раз дольше, чем камера из натурального каучука. Бутилкаучук широко применяют как каучук общего и специального назначения. В производстве РТИ из БК изготовляют паропроводные рукава, конвейерные ленты и резиновые технические детали, от которых требуются повышенные тепло-, паро-, озоно- и химическая стойкость. БК применяют для изготовления электроизоляционных резин, различных прорезиненных тканей и обкладки химической аппаратуры. Резины из БК используются в деталях доильных аппаратов и в пищевой промышленности.

Бутадиенстирольный (СКС) и бутадиенметилстирольные (СКМС) каучуки . Плотность каучука 919-920кг/м 3 , предел прочности 19-32МПа, относительное удлинение 500-800% Резины на основе бутадиенстирольных и бутадиенметилстирольных каучуков имеют высокое сопротивление истиранию. Резины из этих каучуков широко применяются в производстве конвейерных лент для обкладочных резин, различных РТИ.

Уретановый (СКУ)/ Полиуретановый обладают высокой прочностью, эластичностью, сопротивлением истиранию, маслобензостойкость. Стоек к кислороду и озону, его газонепроницаемость в 10 - 20 раз выше, чем у НК. Уретановые резины стойки к воздействию радиации. Резины на основе СКУ применяют для автомобильных шин, транспортерных лент, обкладки труб и желобов для транспортировки абразивных материалов, обуви и др.

Полисульфидный (ПСК) Тиокол . Устойчив к топливу и маслам, к действию кислорода, озона, солнечного света. Имеет высокую газонепроницаемость - хороший герметизирующий материал, хорошие характеристики старения, высокое сопротивление раздиру. Водные дисперсии тиоколов используют для герметизации железобетонных резервуаров. Механические свойства резины на основе тиокола невысокие.

Акрилатный (АК)/ Полиакрилатный . Достоинством акрилатных резин является стойкость к действию серосодержащих масел при высоких температурах; их широко применяют в автомобилестроении. Они стойки к действию кислорода, достаточно теплостойки, обладают адгезией к полимерам и металлам. Отличительные свойства акриловых каучуков - это их высокая тепло- и маслостойкость. Применяют акрилатные каучуки для различных тепло- и маслостойких уплотнительных изделий (например, сальников, колец, прокладок), рукавов, диафрагм, защитных покрытий, гумирования аппаратуры, липких лент; для изготовления изделий, работающих в условиях истирания: различных формовых изделий, печатных валиков, обкладок трубопроводов и спускных желобов, по которым транспортируются абразивные материалы, и т. д.

Недостатками являются низкая морозостойкость, невысокая стойкость к воздействию горячей воды и пара.

Силоксановый-Силиконовый (СКТ ). Плотность каучука 1700-2000кг/м 3 , предел прочности 35-80МПа, относительное удлинение 360% . СКТ - синтетический каучук теплостйкий. Их применяют как эластичные материалы специального назначения в различных отраслях промышленности, многих областях техники. Силоксановые резины используют для изготовления уплотнителей, мембран, профильных деталей для герметизации дверей и окон, кабин самолетов, а также гибких соединений, выдерживающих очень низкие температуры в высоких слоях атмосферы, значительные концентрации озона и солнечной радиации. Их сопротивление старению и диэлектрические характеристики также весьма высоки.

Высокая теплостойкость резин из силоксанового каучука, позволяет применять их также для изготовления резинометаллических виброизоляторов (амортизаторов), антивибраторов воздухопроводов, оболочек свечей зажигания, уплотнителей прожекторов и т. п.

Состав резины и ее получение


К атегория:

Автомобильные эксплуатационные материалы



-

Состав резины и ее получение


Основным компонентом резины является каучук: его содержание в резиновых изделиях составляет примерно 50…60% по массе. У каучука молекулы представляют собой длинные нити, скрученные в клубки и перепутанные между собой. Такое строение каучука обусловливает его главную особенность - эластичность. При растяжении каучука его молекулы постепенно распрямляются, возвращаясь в прежнее состояние после снятия нагрузки. Однако при слишком большом растяжении молекулы необратимо смещаются друг относительно друга и происходит разрыв каучука.

Вначале в резиновых изделиях использовался только натуральный каучук, который получали из млечного сока (латекса) каучуконосного дерева - бразильской гевеи. В 1932 г. впервые в мире в нашей стране был синтезирован синтетический каучук, который вскоре стал основным сырьем для изготовления резиновых изделий. В настоящее время для этой цели выпускаются десятки разновидностей синтетических каучуков.

Наиболее широкое применение находят стирольные каучуки С KMC (бутадиен-метилстирольный) и СКС (бу-тадиен-стирольный). Эти каучуки превосходят натуральный по. износостойкости, однако уступают ему по эластичности, тепло- и морозостойкости.



-

При производстве шин используют изопреновый (СКИ -3) и бутадиеновый (СКВ ) каучуки. Каучук СКИ -3 по свойствам близок к натуральному каучуку, каучук СКВ отличается высокой износостойкостью. Хорошую маслобензостойкость имеют хлорпреновый (наирит) и нитрильный (СКН ) каучуки. Из них изготавливают детали, работающие в контакте с нефтепродуктами: шланги, манжеты и др.

При изготовлении камер и герметизирующего слоя бескамерных шин используется бутилкаучук, характеризующийся высокой газонепроницаемостью.

Натуральный или синтетический каучук составляет основу резиновой смеси или «сырой» резины, которая самостоятельно из-за низкой прочности находит ограниченное применение - в основном для изготовления клеев и уплотнительных прокладок. Для увеличения прочности каучуков используется процесс вулканизации - химическое связывание молекул каучука с атомами серы. В процессе вулканизации, протекающем при температуре 130… 140 °С, молекулы серы соединяются с линейными молекулами каучука, образуя как бы мостики между ними (рис. 59). В результате получается вулканизированная резина, представляющая собой упругий материал.

Количество серы, используемое при вулканизации, определяется требованиями прочности и эластичности материала. С ростом концентрации серы прочность резины увеличивается, но одновременно уменьшается ее эластичность. Поэтому в резинах, предназначенных для изготовления автомобильных камер и покрышек, добавка серы ограничена 1…3% от общего содержания каучука. При содержании серы 40…60% каучук превращается в твердый материал - эбонит.

Для обеспечения требуемой прочности и износостойкости резин, особенно предназначенных для изготовления шин, применяются наполнители. Главным из наполнителей является сажа, представляющая собой порошкообразный углерод с размерами частиц 0,03…0,25 мкм. В современных резинах содержится значительное количество са-жи - от 30 до 70% по отношению к содержащемуся каучуку. При введении сажи прочность резины увеличивается более, чем на порядок. Для изготовления цветных резин используется так называемая белая сажа (кремнезем и другие продукты). Наряду с сажей применяются неактивные наполнители, служащие для увеличения объема резиновой смеси без ухудшения ее свойств (отмученный мел, асбестовая мука и др.).

Рис. 1. Строение вулканизированного каучука

Для облегчения смешивания компонентов резиновой смеси в нее вводятся пластификаторы или мягчители - обычно жидкие или твердые нефтепродукты. С целью замедления процессов старения, а также для повышения выносливости резины при многократных деформациях, добавляются противостарители (антиокислители). В качестве противостарителей используются специальные химические вещества, связывающие проникающий в резину кислород. В качестве таких веществ применяют неозон Д и сантофлекс А. Для ускорения вулканизации используют присадки ускорителей. Получение пористых губчатых резин обеспечивается с помощью специальных порообра-зователей.

Для увеличения прочности ряда резинотехнических изделий (автомобильные покрышки, приводные ремни, шланги высокого давления и пр.) резины армируются с помощью тканевой или металлической арматуры. Например, в одном из наиболее ответственных и дорогостоящих изделий - автомобильных покрышках используются полиамидный (капроновый), вискозный или металлический корды.

Основным этапом технологического процесса приготовления резин явлется смешение, при котором обеспечивается полное и равномерное распределение в каучуке всех содержащихся инградиентов (составных частей), число которых может доходить до 15. Смешение выполняется в резиносмесителях, обычно в две стадии. Сначала изготавливается вспомогательная смесь без серы и ускорителей, затем на второй стадии вводятся сера и ускорители. Получаемые резиновые смеси используются для изготовления соответствующих деталей и для обрезинивания корда. В последнем случае для обеспечения достаточной прочности связи между кордом и резиной корд обязательно пропитывается латексами и смолами. Заключительной операцией является вулканизация, после которой резинотехническое изделие пригодно для использования.

При ремонте автомобильных шин и камер методом горячей вулканизации широко применяются такие сорта сырой резины, как прослоечная, протекторная и камерная. R этом случае для обеспечения требуемого качества ремонта наряду с высокой температурой процесс вулканизации должен проходить под определенным давлением, обеспечиваемым с помощью различных устройств.


К атегория:

Автомобильные шины



-

Резина, ее свойства и показатели, характеризующие качество


Благодаря высокой эластичности (упругости), способности поглощать вибрации и ударные нагрузки, низкой теплопроводности и звукопроводности, хорошей механической прочности, высокому сопротивлению истиранию, растяжимости, хорошей электроизоляционное, газо- и водонепроницаемости, устойчивости к действию многих агрессивных сред, легкости, невысокой стоимости и другим свойствам резина в ряде случаев является незаменимым материалом для автомобильных деталей.

Такое сочетание перечисленных качеств характерно только для резины и делает ее уникальным материалом, в котором наиболее ценится высокая эластичность, т. е. способность восстанавливать свою первоначальную форму после прекращения действия сил, вызвавших деформацию.

Резину используют для изготовления опор двигателя, шлангов, систем охлаждения, питания, смазки, отопления, вентиляции, ремней привода вентилятора, генератора, компрессора и водяного насоса, уплотнителей кузова и кабин, втулок рессор и других деталей подвески, манжет, шлангов, чехлов, диафрагм тормозной системы, деталей пневматической подвески, шумоизолнрующих элементов передней и задней подвесок, ограничителей хода подвески, амортизирующих прокладок и втулок, колесных грязевых щитков, ковриков для пола кабины и кузова и др. И все же главное применение резины па автомобиле - это для изготовления шин.

Использование в конструкции автомобиля резиновых деталей позволило улучшить его эксплуатационные качества и, в частности, снизить собственную массу из-за уменьшения ударных нагрузок и вибраций, снизить шум, проникающий в кузов автомобиля, повысить скорость движения, улучшить комфортабельность езды.

Применение резиновых уплотнительных деталей позволяет также упростить и удешевить производство автомобилей, так как при этом изготовлять и собирать детали кузовов и кабин можно с менее жесткими допусками.

Состав резины. Резину получают вулканизацией резиновой смеси. В состав резиновой смеси входят следующие ингредиенты: каучук, вулканизирующие агенты, ускорители вулканизации, активаторы, противостарителн, активные наполнители или усилители, неактивные наполнители, красители, мягчители, ингредиенты специального назначения.

В зависимости от назначения в резину может входить лишь часть перечисленных ингредиентов, но в ее составе всегда содержатся каучук и вулканизирующий агент.

Каучук. Каучук является основой резиновой смеси и определяет качество резины. В шинных резиновых смесях содержание каучука составляет примерно 50-60% (по массе). Шинные заводы используют более 60% производимого в стране каучука. Каучук подразделяется на натуральный (НК) и синтетический (СК).

Натуральный каучук добывают главным образом из млечного сока (латекса) каучуконосного дерева гевеи, в котором его содержится до 40% . Известны также каучуконосные растения (кок-сагыз, тау-сагыз), содержащие латекс в корнях. Для выделения каучука латекс обрабатывают уксусной или другой малодиссоцин-рующей кислотой, под воздействием которой частицы каучука коагулируют (латекс свертывается) и легко отделяются.

При растяжении каучука его молекулы распрямляются, ориентируясь по направлению растягивающего усилия, а при снятии нагрузки под действием внутреннего теплового движения возвращаются в прежнее состояние.

При критической нагрузке происходит разрыв вследствие смещения молекул относительно друг друга.

Высокая эластичность натурального каучука обусловливается характером строения молекул, их регулярностью и влиянием сил межмолекулярного воздействия.

Каучук легко вступает в химические реакции с кислородом, водородом, галогенами, серой и другими элементами благодаря его непредельной химической природе. Так, уже при комнатной температуре кислород и особенно озон, внедряясь в молекулы каучука, разрывают их на более мелкие, а каучук, разрушаясь, становится хрупким и теряет свои ценные свойства.

Помимо высокой эластичности, натуральный каучук обладает достаточной прочностью, клейкостью, малым теплообразованием и другими положительными свойствами. Однако уже в конце 20-х годов во всем мире и прежде всего в высокоразвитых странах, где отсутствовали источники натурального каучука, возникла необходимость в его замене синтетическим продуктом. Причин здесь несколько: дефицитность, дороговизна, зависимость от импорта натурального каучука.

В 1931 г. в нашей стране впервые в мире был получен синтетический каучук в промышленных условиях по методу, предложенному акад. С. В. Лебедевым. Германия разрешила эту задачу только в 1937 г., а США - в 1942 г. В настоящее время в СССР натуральный каучук имеет ограниченное применение, а используется в основном синтетический каучук. Его доля, например, в шинном производстве составляет около 85% и из года в год возрастает. Из натурального каучука чаще всего изготовляют только отдельные детали шин или же он используется в качестве добавки к резиновой смеси.

Отечественная химическая промышленность производит десятки разновидностей синтетических каучуков, используя для этого в ос-ловном самое экономичное нефтя-вое сырье. Это позволяет получать каучуки невысокой стоимости, так как затраты на сырье и вспомогательные материалы при производстве каучука составляют 65% их себестоимости.

Рис. 1. Схема молекулы каучука

Выпускаемые разновидности синтетических каучуков отличаются механической прочностью, химической стойкостью, износостойкостью, газонепроницаемостью, термостойкостью и другими свойствами. По каждому из этих свойств некоторые синтетические каучуки превосходят натуральный, но длительное время уступали ему в эластичности. В то же время от эластичности зависят величина межмолекулярного трения в резине при деформациях и степень ее нагрева, что очень важно для шинных резин.

Бутадиен метилстирольный (СКМС ) и б у т а-диенсти рольный (СКС ) каучуки превосходят натуральный по износостойкости, сопротивлению тепловому, озонному и естественному старению, паро- и водонепроницаемости. Они в то же время уступают натуральному по эластическим свойствам, теплостойкости, клейкости и морозостойкости. Часть этих каучуков выпускается маслонаполненными. Они содержат примерно 15-30% минерального (нефтяного) масла, что понижает их теплообразование (на 15-20%) при многократных деформациях (особенно важно для шин) и снижает стоимость каучука при некотором повышении других показателей, особенно технологических.

Важной вехой в производстве синтетических каучуков явилось освоение промышленностью синтеза стереорегулярных изопреновых (СКИ – 3) и бутадиеновых (СКД ) каучуков. Для получения стереорегулярных каучуков применяют особо химически чистые исходные продукты и специально катализаторы. Промышленный выпуск этих каучуков начат соответственно в 1964 и 1965 гг.

Каучук СКИ -3 имеет молекулярную структуру, аналогичную натуральному каучуку, и весьма близок к нему по комплексу свойств. Он обладает хорошими технологическими свойствами, в том числе высокой клейкостью. СКИ -3 используется взамен натурального. Из него, например, изготовляют брекерные резины всех типов шин.

Каучук СКД не уступает натуральному по эластичности и превосходит его по сопротивлению истиранию. Он обладает низким коэффициентом механических потерь и низким теплообразованием, хорошей тепло- и морозостойкостью. Эти качества весьма ценны при его применении в производстве шин, в том числе морозо- и теплостойких. Механическая прочность СКД несколько ниже, чем натурального каучука.

Рис. 2. Рост производства натурального и синтетического каучуков

Основная особенность СКД состоит в низкой его клейкости. С учетом этого при производстве шин применяют смесь СКД с СКИ -З, а также с бутадиен-стирольными и бутадпен-метилстирольными каучуками. Использование стереорегулярных каучуков СКД и СКИ -3 позволяет увеличить срок службы шин на 20-30%. Присутствие износостойкого СКД особо благоприятно сказывается в протекторной резине, где его содержание (до 40-50%) увеличивает на 30-40% износостойкость по сравнению с натуральным каучуком. Характеристика прочностных, эластических и износостойких свойств каучуков показана на рис. 69.

Стереорегулярные синтетические каучуки СКИ -3 и СКД являются перспективными.

Кроме указанных каучуков общего назначения, при производстве шип и резиновых автомобильных деталей используют другие каучуки, так называемые специального назначения.

Бутилкаучу к отличается высокой газонепроницаемостью и устойчивостью к действию кислорода, озона и других агрессивных сред. Его используют для изготовления камер и герметизирующего слоя бескамерных шин.

Xлорпреновый каучук (наирит) и бутадиеннитрильный характеризуются повышенной маслобен-зостойкостью. Из них изготовляют детали, работающие в контакте с маслами, топливами и другими растворителями, как, например, шланги системы смазки, манжеты и поршни гидравлического тормозного привода и др.

Силоксановые каучуки (СКТ ) обладают высокой температурной стойкостью, а также озоностойкостью. Изделия из них можно применять в интервале от -90 до +300 °С.

Выпускаются также морозостойкие каучукн, как, например, бутадиенметилстирольный СКМС – 1 0, превосходящие по этому показателю натуральный каучук.

Однако ни натуральный, ни синтетический каучуки не обладают теми качествами, которые требуются от резины. Каучук при понижении температуры становится хрупким, а при нагреве теряет эластичность и превращается в пластичный, непрочный, легкорастворимый в нефтепродуктах материал. Поэтому каучук смешивается с другими ингредиентами и подвергается вулканизации, в результате которой приобретает эластичность, прочность, нерастворимость в нефтепродуктах, температурную стойкость, износостойкость и другие ценные свойства.

Рис. 3. Характеристика свойств натурального и синтетического каучуков: НИ - натуральный каучук; СКИ -3 - синтетический изопреновый; СКД - синтетический дивиниловый; СИМС - синтетический бута-диен-метилстирольный (CKMC -30-APMK -15)

Основным вулканизирующим агентом для шинных резин служит сера. Ее содержание в резиновой смеси - от 15 до 4% от массы каучука.

Процесс вулканизации при помощи серы заключается в нагреве резиновой смеси до определенной температуры и выдержке ее при этой температуре в течение времени, достаточного для того, чтобы атомы серы соединили в некоторых местах двойных связей молекулы каучука, образовав резину - материал с пространственной структурой молекул, обладающий новыми свойствами, отличающимися от свойств каучука. Установлено, что при вулканизации происходят и некоторые другие реакции каучука с ингредиентами и кислородом воздуха.

Сера взаимодействует только с каучуками, представляющими собой ненасыщенные полимеры, к которым относятся натуральный и все синтетические каучуки, полученные на базе диеновых (диоле-финовых) углеводородов. От количества серы зависит твердость резины. При содержании серы 40-60% от массы каучука он превращается в збонпт - высокотвердый материал, поддающийся механической обработке резанием.

Поперечные химические связи между молекулами каучука могут быть не только за счет серы, но п кислорода или валентных химических связей атомов углерода отдельных цепей.

Для вулканизации некоторых каучуков используются фенол-формальдегидные смолы, окислы металлов, перекись бензоила и др. Известны каучуки (патрийдивиниловый, наирит и др.), вулканизирующиеся при нагреве без вулканизирующего агента. Схема строения вулканизированною каучука показана на рис. 4.

Вулканизация резиновой смеси протекает в течение определенного времени п может осуществляться в широком диапазоне температур, начиная от нормальной. Скорость вулканизации зависит от состава резиновой смеси и температуры. При повышении температуры на каждые 10 °С скорость вулканизации возрастает примерно в 2 раза.

Температура вулканизации должна быть выше температуры плавления серы п ниже температуры плавления каучука. Для шинных резин она обычно равна 130-160 °С.

Оптимумом вулканизации называется наименьшая продолжительность вулканизации обеспечивающая при прочих равных условиях наилучшие физико-химические и механические свойства вулканизата (резины).

Рис. 4. Схема строения вулканизированного каучука

Платом вулканизации называется продолжительность периода вулканизации, в течение которого сохраняются высокие физико-механические свойства, достигнутые при оптимуме вулканизации.

Различные физико-химические и механические свойства резин в процессе вулканизации изменяются по индивидуальным закономерностям, и достижение их максимальных значений не совпадает по времени. Поэтому оптимум вулканизации определяется по наиболее важным свойствам, чаще всего по изменению предела прочности при растяжении вулканизата.

Оптимум вулканизации и плато вулканизации зависят от температуры вулканизации и состава резины. Желательно иметь резины по возможности с меньшим оптимумом вулканизации и большим плато вулканизации. Первое позволяет сократить время вулканизации, второе - избежать перевулканизации наружных и недовулканизации внутренних частей вулканизируемых толстостенных резиновых изделий вследствие низкой теплопроводности резины и поэтому неравномерного нагревания.

Практически вулканизацию прекращают несколько раньше оптимума, что повышает сопротивление изделий старению. Другими ингредиентами резиновой смеси являются: ускорители вулканизации, которые сокращают время вулканизации, повышают физико-механические свойства и сопротивление старению резины. Ими служат альтакс, каптакс, тиу-рам и некоторые другие, чаще вссго органические соединения в количестве 1-2 % от массы каучука. От характера ускорителей зависит также температура вулканизации; активаторы вулканизации, которые активизируют действие ускорителей вулканизации и, кроме того, повышают предел прочности при растяжении и сопротивление раздиру.

В виде активизаторов используют окислы некоторых металлов, главным образом окись цинка (цинковые белила), в количестве до 5% от массы каучука. Окись цинка повышает также теплопроводность резины;
— активные наполнители (усилители), которые служат для улучшения свойств резины. Сажа повышает предел прочности при растяжении резин на основе большинства синтетических каучуков в несколько раз (до 10) и на основе натурального каучука на 20-30 . В то же время сажа понижает эластичность резины, ухудшает обрабатываемость резиновых смесей. Сажу получают в результате неполного сгорания нефтепродуктов, природного газа. Содержание сажи в протекторной резине иногда превышает 50 содержания каучука (по массе). В покрышке содержится около 25% сажи от общей ее массы. Так, покрышки грузового автомобиля при массе 48 кг содержат 13 кг сажи. Сажи различаются между собой размерами частиц, развитостью и шероховатостью поверхности, химической природой поверхности. Лучший вид сажи для протекторных резин - высокодисперсные, а для брекерных и каркасных - низко-дисперсные, но высокоструктурные. Кроме углеродных саж в качестве усилителей используют светлые наполнители: белая сажа (кремнезем), окись магния, окись цинка, углекислая магнезия, каолин (белая фарфоровая глина);
— неактивные наполнители (например, отмученный мел, асбестовая мука), которые применяют в количестве 30-40% от массы каучука для увеличения объема резиновой смеси и ее удешевления без заметного ухудшения основных технических свойств;
— противостарители, которые добавляют к резиновым смесям в количестве 1 - 2% от массы каучука для замедления протекания так называемого процесса старения резины, т. е. замедления ухудшения ее физико-химических свойств под действием кислорода воздуха. Старению способствуют нагрев, действие солнечных лучей и многократные изгибы при работе. При старении резины на ее поверхности образуются трещины, она становится хрупкой и менее прочной, легче истирается. Старение уменьшает срок службы резиновых деталей, поэтому повышение сопротивления старению имеет важное значение для сокращения затрат на эксплуатацию резиновых деталей. Это в первую очередь касается автомобильных шин, которые, с одной стороны, работают в условиях, где действуют все факторы, ускоряющие старение, и, с другой стороны, являются дорогостоящими изделиями;
— мягчители или пластификаторы, которые способствуют лучшему смешиванию составных частей резиновых смесей, прежде всего активных и неактивных наполнителей, и делают резиновую смесь более пластичной. Они облегчают приготовление и обработку резиновой смеси. Однако их действие часто выходит за указанные пределы. Так, мягчители обычно уменьшают теплообразование, повышают относительное удлинение, морозостойкость, усталостную выносливость, понижают твердость, повышают или понижают клейкость и др. Проявляются эти свойства по-разному у разных мягчителей. В большинстве своем в качестве мягчителей применяют смеси различных органических веществ, представляющих собой продукты переработки нефти (мазут, гудрон, парафин, церезин, минеральные масла), каменноугольные смолы, продукты растительного происхождения (растительные масла, канифоль, сосновая смола), жирные кислоты (стеариновая кислота, олеиновая кислота), синтетические продукты (полидиены, сложные эфиры). Важно, чтобы введенный в резиновую смесь мягчитель не «выпотевал» на поверхность резиновой детали, ибо при этом ухудшаются технические свойства резины. Содержание мягчителей в резиновой смеси колеблется в широких пределах - от 2 до 30% от массы каучука. При больших количествах мягчитель может быть одновременно и наполнителем. В ряде случаев за счет мягчителей снижается стоимость резины;
— регенерат, который применяют для частичной замены каучука. Он представляет собой специально обработанную резину из утильных покрышек, камер и других изделий. Использование регенерата позволяет снизить стоимость резиновых изделий и прежде всего тех, к которым предъявляются не слишком высокие технические требования (ободные ленты, коврики и др.);
— красители, которые окрашивают светлые резиновые смеси в соответствующие цвета. Для этого используют пигменты минерального и органического происхождения.

Рис. 5. Зависимость предела прочности при растяжении от продолжительности вулканизации

Подбирая ингредиенты и их количественное соотношение, получают резину различного назначения (протекторная, каркасная, бре-керная, камерная, клеевая, бензостойкая, морозостойкая, теплостойкая и др.) с теми или иными выраженными свойствами.

Автотранспортные предприятия используют резину в виде ремонтного материала для ремонта шин. Ее качество оценивается рядом показателей.

Рис. 6. Твердомер Шора: 1 - игла; 2 - шестерня, 3 - зубчатый сектор; 4 - головка; 5 - пружина, 6 - указательная стрелка

Твердость резины замеряют в условных единицах деления шкалы твердомера Шора, зависящих от глубины погружения притуплённой иглы в испытуемый образец.

Истирание резины (см3/кВт.ч) определяется потерей объема образца (см3), отнесенной к единице работы (кВт.ч), затраченной на истирание.

Испытания проводят на специальной машине, где образец определенной формы прижимается с заданным усилием к вращающемуся диску машины с корундовой бумагой № 2/100.

Образец приготовляют определенной формы и точных размеров с пятью надрезами глубиной 0,5 мм и длиной 2 мм, расположенными на расстоянии 2,5 мм друг от друга.

Эластичное т ь (упругость) определяют на маятниковом упругомере (рис. 74) по максимальному углу отклонения маятника после удара его об испытуемый образец. Пользуясь полученными значениями угла отклонения, расчетной формулой и специальными таблицами, определяют эластичность в процентах. Чем выше этот показатель, тем эластичнее резина.

Угол отклонения устанавливают следующим образом. Испытуемый образец толщиной 6 мм закрепляют на наковальне. При нажатии иа рычаг освобождают маятник падающий на образец. Под влиянием упругости образца маятник отскакивает обратно, и по стрелке на шкале отсчитывают угол отклонения.

Рис. 7. Схема разрывной машины: 1 - подвижной сектор; г - образец резины; 3 - измерительная линейка; 4 - червячный винт, 5 - привод червячного винта; 6 - зажимные метки

Резины для ремонта шин, кроме клеевой, поставляют в виде листов, закатанных в рулон с миткалевой или целлофановой прокладкой на деревянные или картонные ролики. Каждый рулон должен иметь бирку с соответствующими данными.

Протекторная резина имеет толщину 2 ± 0,2 мм и предназначена для заполнения вырезанных при ремонте участков протектора и боковин покрышек.

Прослоечная резина толщиной 0,9±0,1 мм предназначена для обкладки вырезанных участков покрышек, пластырей и манжет с целью лучшего их соединения с покрышкой.

Камерная резина служит для изготовления заплат при ремонте камер, теплостойкая - для изготовления варочных камер.

Клеевая резина поставляется в кусках толщиной 10 мм и предназначается для изготовления клея.

Прослоечную и клеевую резины изготовляют из натурального каучука.

При получении листовой резины проверяют ее упаковку, однородность цвета, отсутствие посторонних включений, разрывов, вмятин, складок, включений подвулкаиизированной резины, пузырей и других дефектов, ухудшающих резину как материал для ремонтных целей. Прокладки в рулонах должны полностью закрывать поверхность закатанного материала без морщин, складок и перекосов.