ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Презентация "Аллотропные видоизменения углерода: алмаз и графит". Презентация Углерод: аллотропные модификации Работа может использоваться для проведения уроков и докладов по предмету "Астрономия"

Слайд 1

Аллотропные модификации

Слайд 2

Положение в таблице Менделеева

Углерод Carbogenium - 6ой элемент в таблице Менделеева. Он располагается в главной подгруппе четвертой группы, втором периоде. Углерод-типичный неметалл.

Слайд 3

Нахождение в природе

В настоящее время известно более миллиона соединений углерода с другими элементами. Их изучение составляет целую науку – органическую химию. В тоже время за изучение свойств чистого углерода ученые взялись сравнительно недавно - около 20 лет назад.

Слайд 4

Углерод занимает 17-е место по распространенности в земной коре – 0,048%. Но несмотря на это, он играет огромную роль в живой и неживой природе.

Слайд 5

Углерод входит в состав органических веществ в растительных и живых организмах, в состав ДНК. Содержится в мышечной ткани – 67%, костной ткани – 36% и крови человека (в человеческом организме массой 70 кг в среднем содержится 16 кг связанного углерода).

Слайд 6

Свободный углерод

В свободном виде углерод встречается в нескольких аллотропных модификациях – алмаз, графит, карбин, крайне редко фуллерены. В лабораториях также были синтезированы многие другие модификации: новые фуллерены, нанотрубки, наночастицы и др.

Слайд 7

Слайд 8

Слайд 9

Модель фуллерена С60

Слайд 10

Все это - чистый углерод

Слайд 11

Алмаз – бесцветное, прозрачное, сильно преломляющее свет вещество. Алмаз тверже всех найденных в природе веществ, но при этом довольно хрупок. Он настолько тверд, что оставляет царапины на большинстве материалов.

Структура алмаза

Слайд 12

Плотность алмаза – 3,5 г/см3, tплав=3730С, tкип=4830оС. Алмаз можно получить из графита при p > 50 тыс. атм. и tо = 1200оC В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество таких связанных в каркас атомов чрезвычайно велико.

Слайд 13

Непрерывная трехмерная сетка ковалентных связей, которая характеризуется большой прочностью, определяет многие свойства алмаза, так то плохая тепло- и электропроводимость, а также химическая инертность. Алмазы очень редки и ценны, их вес измеряется в каратах (1 карат=200мг). Ограненный алмаз называют бриллиантом.

Знаменитый бриллиант «Кохинор»

Слайд 14

Графит – устойчивая при нормальных условиях аллотропная модификация углерода, имеет серо-черный цвет и металлический блеск, кажется жирным на ощупь, очень мягок и оставляет черные следы на бумаге.

Структура графита

Слайд 15

Атомы углерода в графите расположены отдельными слоями, образованными из плоских шестиугольников. Каждый атом углерода на плоскости окружен тремя соседними, расположенными вокруг него в виде правильного треугольника.

Слайд 16

Графит характеризуется меньшей плотностью и твердостью, а также графит может расщепляться на тонкие чешуйки. Чешуйки легко прилипают к бумаге – вот почему из графита делают грифели карандашей. В пределах шестиугольников возникает склонность к металлизации, что объясняет хорошую тепло- и электропроводность графита, а также его металлический блеск.

Графитовый электрод

Слайд 17

Карбин был получен в начале 60-х годов В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным, Ю.П. Кудрявцевым. Карбин имеет кристаллическую структуру, в которой атомы углерода соединены чередующимися одинарными и тройными связями.

Строение карбина

Слайд 18

Он имеет вид черного мелкокристаллического порошка, однако может существовать в виде белого вещества с промежуточной плотностью. Карбин обладает полупроводниковыми свойствами, под действием света его проводимость резко увеличивается.

Слайд 19

За счет существования различных типов связи и разных способов укладки цепей из углеродных атомов в кристаллической решетке, физические свойства карбина могут меняться в широких пределах. Позднее карбин был найден в природе в виде вкраплений в природном графите, содержащемся в минерале чаоит, а также в метеоритном веществе.

Слайд 20

Другие формы углерода

Известны и другие формы углерода, такие как уголь, кокс и сажа. Но все эти формы являются композитами, то есть смесью малых фрагментов графита и алмаза.

Слайд 21

Фуллерены

Фуллерены – класс химических соединений, молекулы которых состоят только из углерода, число атомов которого четно, от 32 и более 500, они представляют по структуре выпуклые многогранники, построенные из правильных пяти- и шестиугольников.

Фуллерен С70

Слайд 22

Происхождение термина "фуллерен" связано с именем американского архитектора Ричарда Букминстера Фуллера, конструировавшего полусферические архитектурные конструкции, состоящие из шестиугольников и пятиугольников.

Купол Фуллера

Слайд 23

В противоположность первым двум, графиту и алмазу, структура которых представляет собой периодическую решетку атомов, третья форма чистого углерода является молекулярной. Это означает, что минимальным элементом ее структуры является не атом, а молекула углерода, представляющая собой замкнутую поверхность, которая имеет форму сферы.

Слайд 24

Нанотрубки

Наряду со сфероидальными углеродными структурами, могут образовываться также и протяженные цилиндрические структуры, так называемые нанотрубки, которые отличаются широким разнообразием физико-химических свойств. Идеальная нанотрубка представляет собой свернутую в цилиндр графитовую плоскость, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода.

Строение нанотрубки

Слайд 25

На рисунке представлена идеализированная модель однослойной нанотрубки. Такая трубка заканчивается полусферическими вершинами, содержащими наряду с правильными шестиугольниками, также по шесть правильных пятиугольников. Наличие пятиугольников на концах трубок позволяет рассматривать их как предельный случай молекул фуллеренов, длина продольной оси которых значительно превышает их диаметр.

Слайд 26

Наночастицы

В процессе образования фуллеренов из графита образуются также наночастицы. Это замкнутые структуры, подобные фуллеренам, но значительно превышающие их по размеру. В отличие от фуллеренов, они также как и нанотрубки могут содержать несколько слоев., имеют структуру замкнутых, вложенных друг в друга графитовых оболочек. В наночастицах, аналогично графиту, атомы внутри оболочки связаны химическими связями, а между атомами соседних оболочек действует слабое ван-дер-ваальсово взаимодействие. Обычно оболочки наночастиц имеют форму близкую к многограннику. В структуре каждой такой оболочки, кроме шестиугольников, как в структуре графита, есть 12 пятиугольников, наблюдаются дополнительные пары из пяти и семиугольников.

Слайд 27

Графе́н- двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, находящихся в sp²-гибридизации и соединённых посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость графита, отделённую от объёмного кристалла. По оценкам, графен обладает большой механической жёсткостью и рекордно большой теплопроводностью Высокая подвижность носителей заряда (максимальная подвижность электронов среди всех известных материалов) делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах.

Слайд 28

Основной из существующих в настоящее время способов получения графена в условиях научных лабораторий основан на механическом отщеплении или отшелушивании слоёв Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура. Другой известный способ - метод термического разложения подложки карбида кремния- гораздо ближе к промышленному производству. Поскольку графен впервые был получен только в 2004 году, он ещё недостаточно хорошо изучен и привлекает к себе повышенный интерес.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Углерод: положение в таблице Менделеева, нахождение в природе, свободный углерод. Атомы углерода в графите. Фуллерены как класс химических соединений, молекулы которых состоят из углерода. Первый способ получения твердого кристаллического фуллерена.

    доклад , добавлен 14.12.2010

    Многообразие соединений углерода, их распространение в природе и применение. Аллотропные модификации. Физические свойства и строение атома свободного углерода. Химические свойства углерода. Карбонаты и гидрокарбонаты. Структура алмаза и графита.

    реферат , добавлен 23.03.2009

    Переход аллотропной модификации. Электрические, магнитные, оптические, физико-механические, термические свойства алмаза. Изучение структуры графита, его антифрикционные и химические свойства. Образование, применение озона и кислорода. Аллотропия углерода.

    реферат , добавлен 17.12.2014

    Аллотропные формы углерода (алмаз, карбин и графит), их схематическое изображение. История открытия карбина, подтверждение полиинового строения цепочек. Кристаллическая структура карбина, спектры рентгеновского анализа. Основные методы получения.

    презентация , добавлен 07.01.2013

    Химические и физические свойства серы. История открытия вещества. Основные месторождения самородной серы, способы получения и применение, пожароопасные свойства. Взаимодействие серы с кислородом, аллотропные модификации. Особенности плавления серы.

    презентация , добавлен 12.01.2012

    Механические (расщепление) и химические методы получения графена. Открытие в химии углерода, графита, фуллерена, нанотрубки. Холодный способ производства графенов Петрика. Промышленное производство графена. Использование графена в качестве транзистора.

    доклад , добавлен 13.03.2011

    Сведения об углероде, восходящие к древности и распространение его в природе. Наличие углерода в земной коре. Физические и химические свойства углерода. Получение и применение углерода и его соединений. Адсорбционная способность активированного угля.

    реферат , добавлен 03.05.2009

    Структурные особенности графена - однослойной двумерной углеродной структуры, его дефекты и свойства. Потенциальные области применения графена. Строение и получение фуллеренов. Классификация углеродных нанотрубок по количеству слоев, их применение.

    курсовая работа , добавлен 03.03.2015

Нахождение в природе В настоящее время известно более миллиона соединений углерода с другими элементами. Их изучение составляет целую науку – органическую химию. В тоже время за изучение свойств чистого углерода ученые взялись сравнительно недавно - около 20 лет назад.




Нахождение в природе Углерод входит в состав органических веществ в растительных и живых организмах, в состав ДНК. Содержится в мышечной ткани – 67%, костной ткани – 36% и крови человека (в человеческом организме массой 70 кг в среднем содержится 16 кг связанного углерода).


Свободный углерод В свободном виде углерод встречается в нескольких аллотропных модификациях – алмаз, графит, карбин, крайне редко фуллерены. В лабораториях также были синтезированы многие другие модификации: новые фуллерены, нанотрубки, наночастицы и др.












50 тыс. атм. и t о = 1200 о C В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество т" title="Алмаз Плотность алмаза – 3,5 г/см 3, t плав =373 0 С, t кип =4830 о С. Алмаз можно получить из графита при p > 50 тыс. атм. и t о = 1200 о C В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество т" class="link_thumb"> 12 Алмаз Плотность алмаза – 3,5 г/см 3, t плав =373 0 С, t кип =4830 о С. Алмаз можно получить из графита при p > 50 тыс. атм. и t о = 1200 о C В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество таких связанных в каркас атомов чрезвычайно велико. 50 тыс. атм. и t о = 1200 о C В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество т"> 50 тыс. атм. и t о = 1200 о C В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество таких связанных в каркас атомов чрезвычайно велико."> 50 тыс. атм. и t о = 1200 о C В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество т" title="Алмаз Плотность алмаза – 3,5 г/см 3, t плав =373 0 С, t кип =4830 о С. Алмаз можно получить из графита при p > 50 тыс. атм. и t о = 1200 о C В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество т"> title="Алмаз Плотность алмаза – 3,5 г/см 3, t плав =373 0 С, t кип =4830 о С. Алмаз можно получить из графита при p > 50 тыс. атм. и t о = 1200 о C В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество т">


Алмаз Непрерывная трехмерная сетка ковалентных связей, которая характеризуется большой прочностью, определяет многие свойства алмаза, так то плохая тепло- и электропроводимость, а также химическая инертность. Алмазы очень редки и ценны, их вес измеряется в каратах (1 карат=200мг). Ограненный алмаз называют бриллиантом. Знаменитый бриллиант «Кохинор»






Графит Графит характеризуется меньшей плотностью и твердостью, а также графит может расщепляться на тонкие чешуйки. Чешуйки легко прилипают к бумаге – вот почему из графита делают грифели карандашей. В пределах шестиугольников возникает склонность к металлизации, что объясняет хорошую тепло- и электропроводность графита, а также его металлический блеск. Графитовый электрод






Карбин За счет существования различных типов связи и разных способов укладки цепей из углеродных атомов в кристаллической решетке, физические свойства карбина могут меняться в широких пределах. Позднее карбин был найден в природе в виде вкраплений в природном графите, содержащемся в минерале чаоит, а также в метеоритном веществе. Метеорит содержащий вкрапления карбина




Фуллерены Фуллерены – класс химических соединений, молекулы которых состоят только из углерода, число атомов которого четно, от 32 и более 500, они представляют по структуре выпуклые многогранники, построенные из правильных пяти- и шестиугольников. Фуллерен С 70


Фуллерены Происхождение термина "фуллерен" связано с именем американского архитектора Ричарда Букминстера Фуллера, конструировавшего полусферические архитектурные конструкции, состоящие из шестиугольников и пятиугольников. Купол Фуллера


Фуллерены В начале 70-х годов физхимик–органик Е.Осава предположил существование полой, высокосимметричной молекулыС 60, со структурой в виде усеченного икосаэдра, похожей на футбольный мяч. Чуть позже (1973 г.) российские ученые Д.А. Бочвар и Е.Г. Гальперин сделали первые теоретические квантово-химические расчеты такой молекулы и доказали ее стабильность. Первый способ получения и выделения твердого кристаллического фуллерена был предложен в 1990 г. В.Кречмером и Д.Хафманом с коллегами в институте ядерной физики в г. Гейдельберге (Германия).


Фуллерены В противоположность первым двум, графиту и алмазу, структура которых представляет собой периодическую решетку атомов, третья форма чистого углерода является молекулярной. Это означает, что минимальным элементом ее структуры является не атом, а молекула углерода, представляющая собой замкнутую поверхность, которая имеет форму сферы. Модель фуллерена С 60


Фуллерены В фуллерене плоская сетка шестиугольников (графитовая сетка) свернута и сшита в замкнутую сферу. При этом часть шестиугольников преобразуется в пятиугольники. Образуется структура – усеченный икосаэдр. Каждая вершина этой фигуры имеет трех ближайших соседей. Каждый шестиугольник граничит с тремя шестиугольниками и тремя пятиугольниками, а каждый пятиугольник граничит только с шестиугольниками. Фуллерены с n


Фуллерены Молекулы фуллеренов, в которых атомы углерода связаны между собой как одинарными, так и двойными связями, являются трехмерными аналогами ароматических структур. Обладая высокой электроотрицательностью, они выступают в химических реакциях как сильные окислители. Присоединяя к себе радикалы различной химической природы, фуллерены способны образовывать широкий класс химических соединений, обладающих различными физико-химическими свойствами.


Фуллерены Кристалл фуллерита имеет плотность 1,7 г/см 3, что значительно меньше плотности графита (2,3 г/см 3) и алмаза (3,5 г/см 3). Молекула С 60 сохраняет стабильность в инертной атмосфере аргона вплоть до температур порядка 1700 К. В присутствии кислорода при 500 К наблюдается значительное окисление с образованием СО и CO 2. При комнатной температуре окисление происходит при облучении фотонами с энергией 0,55 эВ. что значительно ниже энергии фотонов видимого света (1,54 эВ). Поэтому чистый фуллерит необходимо хранить в темноте.


Фуллерены Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. На рисунке показана схема установки для получения фуллеренов, которую использовал В.Кретчмер. Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц, величина тока от 100 до 200 А, напряжение В. Схема установки для получения фуллеренов 1-графитовые электроды 2-охлаждаемая медная шина 3-медный кожух 4-пружины


Фуллерены Регулируя натяжение пружины, можно добиться, чтобы основная часть подводимой мощности выделялась в дуге, а не в графитовом стержне. Камера заполняется гелием, поверхность медного кожуха, охлаждаемого водой, покрывается продуктом испарения графита, т.е. графитовой сажей. Если получаемый порошок соскоблить и выдержать в течение нескольких часов в кипящем толуоле, то получается темно-бурая жидкость. При выпаривании ее во вращающемся испарителе получается мелкодисперсный порошок, в нем содержится до 10% фуллеренов С 60 (90%) и С 70 (10%).


Нанотрубки Наряду со сфероидальными углеродными структурами, могут образовываться также и протяженные цилиндрические структуры, так называемые нанотрубки, которые отличаются широким разнообразием физико-химических свойств. Идеальная нанотрубка представляет собой свернутую в цилиндр графитовую плоскость, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода. Строение нанотрубки


Нанотрубки На рисунке представлена идеализированная модель однослойной нанотрубки. Такая трубка заканчивается полусферическими вершинами, содержащими наряду с правильными шестиугольниками, также по шесть правильных пятиугольников. Наличие пятиугольников на концах трубок позволяет рассматривать их как предельный случай молекул фуллеренов, длина продольной оси которых значительно превышает их диаметр.


Нанотрубки Многослойные нанотрубки отличаются от однослойных значительно более широким разнообразием форм и конфигураций. Возможные разновидности поперечной структуры многослойных нанотрубок представлены на рисунке. Структура типа "русской матрешки") представляет собой совокупность вложенных друг в друга однослойных нанотрубок (а). Другая разновидность этой структуры, показанная на рисунке б, представляет собой совокупность вложенных друг в друга призм. Наконец, последняя из приведённых структур (в), напоминает свиток..


Нанотрубки Нанотрубка может быть получена из протяжённых фрагментов графита, которые далее скручиваются в трубку. Для образования протяжённых фрагментов необходимы специальные условия нагрева графита. Оптимальные условия получения нанотрубок реализуются в дуговом разряде при использовании графита в качестве электрода. Однослойные нанотрубки образуются при добавлении в анод небольшой примеси Fe, Co, Ni, Cd (т. е. добавлением катализаторов). Кроме того, однослойные нанотрубки получаются при окислении многослойных нанотрубок. С целью окисления многослойные нанотрубоки обрабатываются кислородом при умеренном нагреве, либо кипящей азотной кислотой. Окисление позволяет снять верхние слои с многослойной трубки и открыть её концы.


Нанотрубки В основе многих технологических применений нанотрубок лежит такое их свойство, как высокая удельная поверхность (в случае однослойной нанотрубки около 600 кв. м. на 1/г), что открывает возможность их использования в качестве пористого материала в фильтрах и т.д. Такие свойства нанотрубки, как ее малые размеры, меняющаяся в значительных пределах в зависимости от условий синтеза, электропроводность, механическая прочность и химическая стабильность, позволяют рассматривать нанотрубку в качестве основы будущих элементов микроэлектроники. Расчетным путем доказано, что введение в идеальную структуру нанотрубки в качестве дефекта пары пятиугольник–семиугольник изменяет ее электронные свойства. Нанотрубка с внедренным в нее дефектом может рассматриваться как металл-полупроводник, который, в принципе, может составить основу полупроводникового элемента рекордно малых размеров.


Наночастицы В процессе образования фуллеренов из графита образуются также наночастицы. Это замкнутые структуры, подобные фуллеренам, но значительно превышающие их по размеру. В отличие от фуллеренов, они также как и нанотрубки могут содержать несколько слоев., имеют структуру замкнутых, вложенных друг в друга графитовых оболочек. В наночастицах, аналогично графиту, атомы внутри оболочки связаны химическими связями, а между атомами соседних оболочек действует слабое ван-дер-ваальсово взаимодействие. Обычно оболочки наночастиц имеют форму близкую к многограннику. В структуре каждой такой оболочки, кроме шестиугольников, как в структуре графита, есть 12 пятиугольников, наблюдаются дополнительные пары из пяти и семиугольников.


Заключение Хотя фуллерены имеют короткую историю, это направление науки быстро развивается, привлекая к себе все новых исследователей. Она включает три направления: физика фуллеренов, химия фуллеренов и технология фуллеренов. Физика фуллеренов занимается исследованием структурных, механических, магнитных, оптических свойств фуллеренов и их соединений. Сюда относится также изучение характера взаимодействия между атомами углерода в этих соединениях, свойства и структура систем, состоящих из молекул фуллеренов. Физика фуллеренов является наиболее продвинутой ветвью в области фуллеренов. Химия фуллеренов связана с созданием и изучением новых химических соединений, основу которых составляютфуллерены, а также изучает химические процессы, в которых они участвуют. Следует отметить, что по концепциям и методам исследования это направление химии во многом принципиально отличается от традиционной химии. Технология фуллеренов включает в себя как методы производства фуллеренов, так и различные их приложения.

Мусаева Анастасия

В данной презентации описаны физические свойства алмаза, графита;их использование, подобраны красочные фотографии алмазов,изделий из графита.

Скачать:

Предварительный просмотр:

https://accounts.google.com


Подписи к слайдам:

Выполнила: Мусаева Анастасия, ученица 9 «а» МКОУ СОШ с. Первомайское Михайловского района

Алмаз - это кристаллическая модификация чистого углерода, образованная в глубоких недрах Земли, в верхней мантии на глубинах от 140 до 190 километров, при исключительно высоком давлении и температуре.

Алмаз - самое твердое природное вещество. Слово «алмаз» означает непреодолимый, непобедимый, несокрушимый

Большинство природных алмазов образовываются при сверх высоком давлении и температуре, которые происходят глубоко в мантии Земли на глубине от 140 до 190 километров. При этом из углеродосодержащих минералов начинает образовываться алмаз, рост которого происходит в течение периода с 1 млрд. до 3,3 млрд. лет. Как образовываются алмазы?

Шахты по добыче алмазов

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Алмазы попадают на поверхность Земли с вулканическими извержениями. Часто алмазы вымывает из горных пород, при этом бриллианты концентрируются в руслах рек и местах впадения в океан. Странами в которых сконцентрировано наибольшее количество месторождений алмазов являются Россия, Ботсвана, Канада, ЮАР, Ангола и Намибия.

Алмаз применяется при бурении горных пород и механической обработке самых разнообразных материалов, для протягивании тонкой проволоки.

Знаменитый бриллиант Голубое сердце, который носила Кейт Уинслет в фильме Титаник. Он был найден в южноафриканской шахте Премьер. Этот бриллиант весит 30,82 карат и был огранен в Париже в 1909 году. С тех пор его многократно перепродавали. Он был во владении ювелирного дома Картье и многих других ценителей. В данный момент Голубое сердце находится в США в бриллиантовой коллекции одного из музеев.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Самый крупный алмаз в мире был найден в Южной Африке и назван Куллинан. Он весил 3,106.75 карат, однако его разрезали на части. Самая крупная – Большая Звезда Африки (Куллинан I) весом в 530.2 карата, Малая Звезда Африки (Куллинан II) – 317.4 карат и еще 104 бриллианта безупречной прозрачности и цвета. В настоящее время Малая Звезда Африки является украшением британской короны. Большая Звезда Африки украшает королевский королевский скипетр

Самые большие алмазы. Cullinan I Cullinan II

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Графиты - вещества серого цвета с металлическим блеском, аморфного, кристаллического, или волокнистого сложения, жирные на ощупь, удельный вес от 1,9 до 2,6.По внешнему виду графит, имеет металлический свинцово-серый цвет, колеблющейся от серебристого до черного, с характерным жирным блеском. Поэтому потребители зачастую называют явнокристаллические графиты серебристыми, а скрытокристаллические - черными. На ощупь графит жирен и отлично пачкается. На поверхностях он легко дает черту от серебристого до черной, блестящей. Графит отличается способностью прилипать к твердым поверхностям, что позволяет создавать тонкие пленки при натирании им поверхностей твердых тел. Графит представляет собой алотропную форму углерода, которая характеризуется определенной кристаллической структурой, имеющей своеобразное строение

Графитовая шахта.

Свойства графита Широкое применение графита основывается на нескольких уникальных свойствах: - хорошая электропроводность; - устойчивость к агрессивным средам; - устойчивость к высоким температурам; - высокая смазывающая способность. Электрические свойства Электропроводность графита в 2,5 раза больше электропроводности ртути. При температуре 0 град. удельное сопротивление электрическому току находится в пределах от 0,390 до 0,602 ом. Низкий предел удельного сопротивления для всех видов графита одинаков и равен 0,0075 ом.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него:

Слайд 1

Углерод и его соединения
Работу выполнила: учитель ГБОУ СОШ №1465 Попова Светлана Анатольевна

Слайд 2

Элемент - неметалл № 6 в периодической системе
C
IV группа главная подгруппа
Возможные степени окисления: -4, 0, +2, +4
Основа всех живых организмов

Слайд 3

Аллотропные модификации углерода имеют атомную кристаллическую решетку. Их строение
Алмаз
Графит
Фуллерен

Слайд 4

Алмаз
Применяется в: Обрабатывающей промышленности Электротехнике Горной промышленности Ювелирном производстве
…это самое твердое вещество на Земле, тугоплавкое с высоким показателем преломления

Слайд 5

Графит
…это мягкое серо-черное вещество, тугоплавкое, являющееся полупроводником со слоистой структурой. Применяется в: Графитовых стержнях-электродах Производстве теплозащитного материала для головных частей ракет (термостойкость) Получении тиглей Изготовлении минеральных красок Карандашной промышленности

Слайд 6

Фуллерен
Фуллерены планируют использовать: 1. Для создания фотоприемников 2. Для создания сверхпроводящих материалов 3. В качестве красителей для копировальных машин 4. В качестве основы для аккумуляторных батарей 5. Для создания оптоэлектронных устройств 6. В медицине и фармакологии
… это новая аллотропная форма углерода, молекула которого состоит из 60-70 атомов, образующих сферу.

Слайд 7

Нахождение в природе
Мел, известняк, мрамор CaCO3
Магнезит MgCO3
Сидерит FeCO3
В самородном виде: алмаз и графит
В виде солей:
Содержание углерода в земной коре 0,1 % по массе

Слайд 8

Слайд 9

В составе растений и животных (~18 %).
В организме человека достигает около 21 % (15 кг на 70 кг массы тела). Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани
Выводится из организма преимущественно с выдыхаемым воздухом (углекислый газ) и мочой (мочевина).
Углерод в живых организмах

Слайд 10

Химические свойства углерода
Со сложными веществами: 1. Восстанавливает металлы из их оксидов CaO+ 3C0=CaC2+C+2O 2. Реагирует с концентрированными кислотами С0+2H2SO4=2SO2+C+4O2+2H2O
С простыми веществами: 1. С неметаллами: Si + C0 =SiC-4 C0+O2=C+4O2 2. С металлами: 4AL + 3C0 = AL4C3-4
В реакциях углерод проявляет, и окислительные, и восстановительные свойства

Слайд 11

Применение углерода
Производство чугуна и стали
В медицине (уголь активированный)
Карандашная промышленность
Для изготовления электродов
В ювелирной промышленности

Слайд 12

Для углерода в сложных соединениях характерны следующие степени окисления
- 4
+4
+2
низшая
промежуточная
высшая

Слайд 13

Степень окисления -4
CH4 – газ метан
Al4C3 - карбид алюминия
Сгорание: CH4 + 2O2 = CO2 +2H2O
Реакции с водой и с кислотой: AL4C3 + 12H2O=3CH4 + 4AL(OH)3 Al4C3 + 12HCl = 3CH4 + 4AlCl3

Слайд 14

Степень окисления +2
CO - угарный газ сильный яд, опасный для жизни и здоровья человека (несолеобразующий оксид)

Слайд 15

Степень окисления +4
H2CO3-угольная кислота
Соли угольной кислоты (например K2CO3-карбонат калия)
CO2-углекислый газ

Слайд 16

1.Реагирует с кислородом 2CO + O2 =CO2 2. Является восстановителем металлов из их оксидов ZnO + CO = Zn + CO2
Химические свойства CO

Слайд 17

Химические свойства CO2- (кислотный оксид)
1.Реагирует с водой CO2 + H2O = H2CO3 2.Реагирует с основными оксидами CO2 + CaO = CaCO3 3.Реагирует с щелочами CO2 + 2KOH = K2CO3 + H2O 4.Реагирует с углеродом CO2 + C = 2CO

Слайд 18

Химические свойства карбонатов (солей угольной кислоты)
1.Качественной реакцией на карбонаты является реакция с кислотами CaCO3 + 2HCL = CaCL2 + H2O + CO2 2. Нерастворимые в воде карбонаты термически неустойчивы CaCO3 = CaO + CO2 3.Карбонаты реагируют с солями Na2CO3 + BaCL2 = 2NaCL + BaCO3

http://im1-tub-ru.yandex.net/i?id=501551220-00-72&n=21
http://im5-tub-ru.yandex.net/i?id=51546160-51-72&n=21
http://im0-tub-ru.yandex.net/i?id=140463688-66-72&n=21
http://im4-tub-ru.yandex.net/i?id=412111321-54-72&n=21
http://im0-tub-ru.yandex.net/i?id=945542505-10-72&n=21
http://im6-tub-ru.yandex.net/i?id=795134635-71-72&n=21
http://im2-tub-ru.yandex.net/i?id=440598815-39-72&n=21