Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Подобные документы
Сущность издержек производства, их классификация. Основные направления снижения издержек производства. Экономическая сущность и функции прибыли. Операционные и внереализационны расходы. Изучение взаимосвязи издержек производства и прибыли предприятия.
курсовая работа , добавлен 24.05.2014
Предмет и функции экономтеории. Товар и его свойства. Принципы предельной полезности. Теория денег К. Маркса. Понятие ликвидности, издержек и дохода фирмы. Виды и характерные черты конкуренции. Модель совокупного спроса и предложения. Налоги, их функции.
шпаргалка , добавлен 11.01.2011
Предмет экономической теории, структура и функции. Экономические законы и их классификация. Трудовая теория стоимости. Товар и его свойства. Двойственный характер труда, воплощенного в товаре. Величина стоимости товара. Закон стоимости и его функции.
шпаргалка , добавлен 22.10.2009
Проблемы издержек производства как предмет исследования ученых-экономистов. Сущность издержек производства и их виды. Роль прибыли в условиях развития предпринимательства. Сущность и функции прибыли, ее виды. Рентабельность предприятия и ее показатели.
курсовая работа , добавлен 28.11.2012
Сущность и значение экономического роста. Типы и способы измерения экономического роста. Основные свойства функции Кобба-Дугласа. Показатели и модели экономического роста. Факторы, сдерживающие экономический рост. Производная функция и ее свойства.
курсовая работа , добавлен 26.06.2012
Сущность и основные функции прибыли. Экономическая эффективность модернизации технологического оборудования и использование инновационных технологий при ремонте дорожного покрытия автомобильных дорог. Резервы повышения прибыли в строительной организации.
дипломная работа , добавлен 04.07.2013
Сущность прибыли в экономической науке: понятие, виды, формы, методы планирования. Сущность метода прямого счета, совмещенного расчета. Основные пути увеличения прибыли на предприятиях России в современных условиях. Связь между оплатой труда и прибылью.
курсовая работа , добавлен 18.12.2017
С помощью технологических множеств моделируются производственные процессы, которые осуществляются производственной системой. У каждой системы есть входы и выходы:
Производственный процесс представляется как процесс однозначного преобразования факторов производства в продукты производства в течение заданного интервала времени. За этот интервал времени происходит полное исчезновение факторов и появление продуктов.
При таком моделировании – преобразование факторов в продукты – полностью скрыта роль внутренней структуры производственной системы, ее организации и методов управления производства.
Наблюдателям доступна информация о состоянии входов и выходов системы. Эти состояния определяются, с одной стороны, точкой в пространстве товаров и факторов, а с другой, состояние выходов определяется точкой в пространстве выходов.
Модели пространства включают в себя множество факторов пространства, множество параметров пространства и множество доступных технологий.
Технология – это технический способ преобразования факторов производства в продукты.
Технологическим процессом называют упорядоченный набор двух векторов , где – вектор факторов производства, – вектор продуктов. Технологический процесс является простейшей моделью пространства, которая задается от ряда элементов:
Таким образом, технологический процесс описывается набором из (n+ m) чисел: .
Например, возьмем компьютер типа А и , т.е выпускается один компьютер, тогда этот технологический процесс описывается 7+1=8 числами.
В практике моделирования реальных производственных систем в качестве первого приближения используется гипотеза линейных технологий.
Линейность технологий предполагает увеличение продуктов V при возрастании наборов факторов U .
Рассмотрим основные свойства технологических процессов:
1. Подобие.
Технологический процесс подобен , т.е. ~ , если выполняется условие: , которое означает, что - это тот же технологический процесс, но протекающий с интенсивностью :
Для подобных процессов выполняется система равенств:
Подобные процессы лежат на одном луче технологии производства.
2. Различие.
Различные технологические процессы лежат на различных лучах и не могут быть преобразованы друг в друга с помощью умножения на положительное число.
3. Составные технологические процессы.
Процесс называется составным, если существуют и , что .
Процесс, который не является составным, называют базовым.
Луч, проходящий через начало координат в направлении базового процесса, называют базовым лучом. Каждому базовому лучу соответствует базовая технология, а все точки базового луча отражают подобные технологические процессы.
По определению базовый технологический процесс не может быть выражен через линейную комбинацию других технологических процессов.
В положительном октанте можно разместить гиперплоскость, отсекающую единичные отрезки от каждой координаты.
Это позволяет наглядно представить технологии производства.
Покажем возможные пересечения гиперплоскости технологическими лучами.
1) Единственная доступная технология – базовая.
2) Появление новой дополнительной базовой технологии.
3) Линейная комбинация двух базовых технологий.
4) Третья дополнительная базовая технология.
5) Возможность формирования технологий, лежащих внутри треугольной области.
6) Две треугольные области с шестью базовыми технологиями.
7) Объединение технологий – выпуклый шестиугольник.
8) Возможен случай с бесконечным числом базовых технологий.
В этих графических образах все внутренние и граничные точки, за исключением вершин, отражают составные технологические процессы, а множество всех технологических процессов называется технологическим множеством Z .
Технологические множества обладают следующими свойствами:
1. Не осуществление рога изобилия.
(Ø, V) Z , следовательно, V= Ø .
(Ø, Ø) Z означает бездействие.
2. Технологическое множество выпукло, а процессы, лучи которых лежат на границе этого множества, могут смешиваться друг с другом.
3. Технологическое множество ограничено сверху в силу ограниченности экономических ресурсов.
4. Технологическое множество замкнуто, и эффективные технологии лежат на границе этого множества.
Специфическим свойством технологических множеств является существование неэффективных процессов.
Если существует , то возможны любые технологические процессы, удовлетворяющие условию (для факторов), (для продуктов).
Существует ( ,Ø) Z , что означает полное уничтожение факторов производства. В нем вообще не возникают продукты.
Технологический процесс более эффективен, чем , если и/или .
ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ.
Математическое описание эффективного процесса может быть преобразовано в производственную функцию путем агрегирования факторов производства, а также агрегирования продуктов производства в единственный продукт.
Формализующее множество всех технологически допустимых векторов чистых выпусков продукции.
Определение
Пусть в экономике имеется благ. В процессе производства из них благ расходуются. Обозначим вектор этих благ (затрат) (размерность вектора ). Другие благ выпускаются в процессе производства (размерность вектора - ). Обозначим вектор этих благ . Тогда вектор (размерность - ) называется вектором чистых выпусков . Совокупность всех технологически допустимых векторов чистых выпусков и составляют технологическое множество . Фактически это некоторое подмножество пространства .
Для читателей, испытывающих трудности с понятиями вектор, множество:
вектор - список благ, каждое благо описано своим количеством, набор чисел;
все блага, израсходованные в производстве записываются в начале вектора чистого выпуска z со знаком минус (-x), произведенные со знаком плюс (y);
все возможные для производства сочетания образуют технологическое множество (сочетаний выпуска).
Свойства
- Непустота : технологическое множество не пусто. Непустота означает принципиальную возможность производства.
- Допустимость бездеятельности : нулевой вектор принадлежит технологическому множеству. Это формальное свойство означает, что нулевой выпуск при нулевых затратах является допустимым.
- Замкнутость : технологическое множество содержит свою границу и предел любой последовательности технологически допустимых векторов чистых выпусков тоже принадлежит технологическому множеству.
- Свобода расходования : если данный вектор принадлежит технологическому множеству, то ему принадлежит и любой вектор . Это означает, что формально тот же объем выпуска можно производить и большими затратами.
- Отсутствие "рога изобилия" : из неотрицательных векторов чистого выпуска технологическому множеству принадлежит только нулевой вектор. Это означает, что для производства продукции в положительном количестве необходимы ненулевые затраты.
- Необратимость : для любого допустимого вектора , противоположный вектор не принадлежит технологическому множеству. То есть из выпущенной продукции невозможно произвести ресурсы в том же количестве, в котором они используются для производства этой продукции.
- Аддитивность : сумма двух допустимых векторов также является допустимым вектором. То есть допускается комбинирование технологий.
- Свойства, связанные с отдачей от масштаба производства:
- Невозрастающая отдача от масштаба : для любого
- Неубывающая отдача от масштаба : для любого если z принадлежит технологическому множеству, то также принадлежит технологическому множеству.
- Постоянная отдача от масштаба : одновременное выполнение двух предыдущих свойств, то есть для любого положительного если принадлежит технологическому множеству, то также принадлежит технологическому множеству. Свойство постоянной отдачи означает, что технологическое множество является конусом.
8. Выпуклость : для любых двух допустимых векторов допустимыми являются также любые векторы , где . Свойство выпуклости означает возможность "смешивать" технологии. Оно, в частности, выполнено, если технологическое множество обладает свойством аддитивности и невозрастающей отдачи от масштаба. Более того, в этому случае технологическое множество является выпуклым конусом.
Эффективная граница технологического множества
Допустимую технологию называют эффективной , если не существует другой, отличной от неё, допустимой технологии . Множество эффективных технологий образуют эффективную границу технологического множества.
Если выполнено условие свободы расходования и замкнутости технологического множества, то невозможно бесконечно увеличивать производство одного блага без уменьшения выпуска других. В этом случае для любой допустимой технологии есть эффективная технология . В таком случае, вместо всего технологического множества можно использовать только его эффективную границу. Обычно эффективную границу можно задать некоторой производственной функцией.
Производственная функция
Рассмотрим однопродуктовые технологии , где - вектор размерности , а - вектор затрат размерности . Рассмотрим множество , включающее в себя все возможные векторы затрат , таких, что для каждого существует , такой что векторы чистых выпусков принадлежат к технологическому множеству.
Числовая функция на называется производственной функцией , если для каждого данного вектора затрат значение определяет максимальное значение допустимого выпуска (такого, что вектор чистого выпуска (-x,y) принадлежит технологическому множеству).
Любая точка эффективной границы технологического множества представима в виде , а обратное верно в том случае, если является возрастающей функцией (в таком случае - уравнение эффективной границы). Если технологическое множество обладает свойством свободы расходования и допускает описание производственной функцией, то технологическое множество определяется на основе неравенства .
Для того, чтобы технологическое множество можно было бы задавать с помощью производственной функции достаточно, чтобы для любого множество допустимых выпусков при данных затратах , являлось ограниченным и замкнутым. В частности, это условие выполнено, если для технологического множества выполнены свойства замкнутости, невозрастающей отдачи от масштаба и отсутствия рога изобилия.
Если технологическое множество выпукло, то производственная функция вогнута и непрерывна на внутренности множества . Если выполнено условие свободы расходования, то является неубывающей функцией (в этом случае также из вогнутости функции следует выпуклость технологического множества). Наконец, если выполнены одновременно и условие отсутствия рога изобилия и допустимость бездеятельности, то .
Если производственная функция является дифференцируемой, то можно определить локальную эластичность масштаба следующими эквивалентными способами:
где - вектор-градиент производственной функции.
Определив таким образом эластичность масштаба можно показать, что если технологическое множество обладает свойством постоянной отдачи от масштаба, то , если убывающей отдачи от масштаба, то , если возрастающей отдачи, то .
Задача производителя
Если задан вектор цен , то произведение представляет собой прибыль производителя. Задача производителя сводится к поиску такого вектора , чтобы при заданном векторе цен прибыль была максимальна. Множество цен благ, при которых эта задача имеет решение, обозначим . Можно показать, что при непустом, замкнутом технологическом множестве с невозрастающей отдачей от масштаба задача производителя имеет решение на множестве цен , дающих отрицательную прибыль на так называемых рецессивных направлениях (это векторы технологического множества, для которых при любом неотрицательном векторы также принадлежат технологическому множеству). В частности, если множество рецессивных направлений совпадает с , то решение существует при любых положительных ценах.
Функция прибыли определяется как , где - решение задачи производителя при данных ценах (это так называемая функция предложения, возможно многозначная). Функция прибыли является положительно однородной (первой степени), то есть и непрерывной на внутренности . Если технологическое множество строго выпукло, то функция прибыли является к тому же непрерывно дифференцируемой. Если технологическое множество замкнуто, то функция прибыли выпукла на любом выпуклом подмножестве допустимых цен .
Функция (отображение) предложения является положительно однородной нулевой степени. Если технологическое множество строго выпукло, то функция предложения является однозначной на P и непрерывной на внутренности . Если функция предложения дважды дифференцируема, то матрица Якоби этой функции симметрична и неотрицательно определена.
Если технологическое множество представлено посредством производственной функции, то прибыль определяется как , где - вектор цен на факторы производства, в данном случае цена выпускаемой продукции. Тогда для любого внутреннего решения (то есть принадлежащего внутренности ) задачи производителя справедливо равенство предельного продукта каждого фактора его относительной цене, то есть в векторной форме .
Если задана функция прибыли , являющаяся дважды непрерывно дифференцируемой, выпуклой и положительно однородной (первой степени) функцией, то можно восстановить технологическое множество, как множество, содержащее при любом неотрицательном векторе цен векторы чистых выпусков , удовлетворяющих неравенству . Можно также показать, что если функция предложения является положительно однородной нулевой степени и матрица её первых производных непрерывна, симметрична и неотрицательно определена, то соответствующая функция прибыли удовлетворяет вышеуказанным требованиям (верно также и обратное утверждение).
См. также
Напишите отзыв о статье "Технологическое множество"
Литература
Отрывок, характеризующий Технологическое множество
Княгиня, улыбаясь, слушала.– Ежели еще год Бонапарте останется на престоле Франции, – продолжал виконт начатый разговор, с видом человека не слушающего других, но в деле, лучше всех ему известном, следящего только за ходом своих мыслей, – то дела пойдут слишком далеко. Интригой, насилием, изгнаниями, казнями общество, я разумею хорошее общество, французское, навсегда будет уничтожено, и тогда…
Он пожал плечами и развел руками. Пьер хотел было сказать что то: разговор интересовал его, но Анна Павловна, караулившая его, перебила.
– Император Александр, – сказала она с грустью, сопутствовавшей всегда ее речам об императорской фамилии, – объявил, что он предоставит самим французам выбрать образ правления. И я думаю, нет сомнения, что вся нация, освободившись от узурпатора, бросится в руки законного короля, – сказала Анна Павловна, стараясь быть любезной с эмигрантом и роялистом.
– Это сомнительно, – сказал князь Андрей. – Monsieur le vicomte [Господин виконт] совершенно справедливо полагает, что дела зашли уже слишком далеко. Я думаю, что трудно будет возвратиться к старому.
– Сколько я слышал, – краснея, опять вмешался в разговор Пьер, – почти всё дворянство перешло уже на сторону Бонапарта.
– Это говорят бонапартисты, – сказал виконт, не глядя на Пьера. – Теперь трудно узнать общественное мнение Франции.
– Bonaparte l"a dit, [Это сказал Бонапарт,] – сказал князь Андрей с усмешкой.
(Видно было, что виконт ему не нравился, и что он, хотя и не смотрел на него, против него обращал свои речи.)
– «Je leur ai montre le chemin de la gloire» – сказал он после недолгого молчания, опять повторяя слова Наполеона: – «ils n"en ont pas voulu; je leur ai ouvert mes antichambres, ils se sont precipites en foule»… Je ne sais pas a quel point il a eu le droit de le dire. [Я показал им путь славы: они не хотели; я открыл им мои передние: они бросились толпой… Не знаю, до какой степени имел он право так говорить.]
– Aucun, [Никакого,] – возразил виконт. – После убийства герцога даже самые пристрастные люди перестали видеть в нем героя. Si meme ca a ete un heros pour certaines gens, – сказал виконт, обращаясь к Анне Павловне, – depuis l"assassinat du duc il y a un Marietyr de plus dans le ciel, un heros de moins sur la terre. [Если он и был героем для некоторых людей, то после убиения герцога одним мучеником стало больше на небесах и одним героем меньше на земле.]
Не успели еще Анна Павловна и другие улыбкой оценить этих слов виконта, как Пьер опять ворвался в разговор, и Анна Павловна, хотя и предчувствовавшая, что он скажет что нибудь неприличное, уже не могла остановить его.
– Казнь герцога Энгиенского, – сказал мсье Пьер, – была государственная необходимость; и я именно вижу величие души в том, что Наполеон не побоялся принять на себя одного ответственность в этом поступке.
– Dieul mon Dieu! [Боже! мой Боже!] – страшным шопотом проговорила Анна Павловна.
– Comment, M. Pierre, vous trouvez que l"assassinat est grandeur d"ame, [Как, мсье Пьер, вы видите в убийстве величие души,] – сказала маленькая княгиня, улыбаясь и придвигая к себе работу.
– Ah! Oh! – сказали разные голоса.
– Capital! [Превосходно!] – по английски сказал князь Ипполит и принялся бить себя ладонью по коленке.
Виконт только пожал плечами. Пьер торжественно посмотрел поверх очков на слушателей.
– Я потому так говорю, – продолжал он с отчаянностью, – что Бурбоны бежали от революции, предоставив народ анархии; а один Наполеон умел понять революцию, победить ее, и потому для общего блага он не мог остановиться перед жизнью одного человека.
– Не хотите ли перейти к тому столу? – сказала Анна Павловна.
Но Пьер, не отвечая, продолжал свою речь.
– Нет, – говорил он, все более и более одушевляясь, – Наполеон велик, потому что он стал выше революции, подавил ее злоупотребления, удержав всё хорошее – и равенство граждан, и свободу слова и печати – и только потому приобрел власть.
– Да, ежели бы он, взяв власть, не пользуясь ею для убийства, отдал бы ее законному королю, – сказал виконт, – тогда бы я назвал его великим человеком.
– Он бы не мог этого сделать. Народ отдал ему власть только затем, чтоб он избавил его от Бурбонов, и потому, что народ видел в нем великого человека. Революция была великое дело, – продолжал мсье Пьер, выказывая этим отчаянным и вызывающим вводным предложением свою великую молодость и желание всё полнее высказать.
– Революция и цареубийство великое дело?…После этого… да не хотите ли перейти к тому столу? – повторила Анна Павловна.
– Contrat social, [Общественный договор,] – с кроткой улыбкой сказал виконт.
– Я не говорю про цареубийство. Я говорю про идеи.
– Да, идеи грабежа, убийства и цареубийства, – опять перебил иронический голос.
– Это были крайности, разумеется, но не в них всё значение, а значение в правах человека, в эманципации от предрассудков, в равенстве граждан; и все эти идеи Наполеон удержал во всей их силе.
– Свобода и равенство, – презрительно сказал виконт, как будто решившийся, наконец, серьезно доказать этому юноше всю глупость его речей, – всё громкие слова, которые уже давно компрометировались. Кто же не любит свободы и равенства? Еще Спаситель наш проповедывал свободу и равенство. Разве после революции люди стали счастливее? Напротив. Mы хотели свободы, а Бонапарте уничтожил ее.
Князь Андрей с улыбкой посматривал то на Пьера, то на виконта, то на хозяйку. В первую минуту выходки Пьера Анна Павловна ужаснулась, несмотря на свою привычку к свету; но когда она увидела, что, несмотря на произнесенные Пьером святотатственные речи, виконт не выходил из себя, и когда она убедилась, что замять этих речей уже нельзя, она собралась с силами и, присоединившись к виконту, напала на оратора.
– Mais, mon cher m r Pierre, [Но, мой милый Пьер,] – сказала Анна Павловна, – как же вы объясняете великого человека, который мог казнить герцога, наконец, просто человека, без суда и без вины?
– Я бы спросил, – сказал виконт, – как monsieur объясняет 18 брюмера. Разве это не обман? C"est un escamotage, qui ne ressemble nullement a la maniere d"agir d"un grand homme. [Это шулерство, вовсе не похожее на образ действий великого человека.]
– А пленные в Африке, которых он убил? – сказала маленькая княгиня. – Это ужасно! – И она пожала плечами.
– C"est un roturier, vous aurez beau dire, [Это проходимец, что бы вы ни говорили,] – сказал князь Ипполит.
Мсье Пьер не знал, кому отвечать, оглянул всех и улыбнулся. Улыбка у него была не такая, какая у других людей, сливающаяся с неулыбкой. У него, напротив, когда приходила улыбка, то вдруг, мгновенно исчезало серьезное и даже несколько угрюмое лицо и являлось другое – детское, доброе, даже глуповатое и как бы просящее прощения.
Виконту, который видел его в первый раз, стало ясно, что этот якобинец совсем не так страшен, как его слова. Все замолчали.
– Как вы хотите, чтобы он всем отвечал вдруг? – сказал князь Андрей. – Притом надо в поступках государственного человека различать поступки частного лица, полководца или императора. Мне так кажется.
– Да, да, разумеется, – подхватил Пьер, обрадованный выступавшею ему подмогой.
– Нельзя не сознаться, – продолжал князь Андрей, – Наполеон как человек велик на Аркольском мосту, в госпитале в Яффе, где он чумным подает руку, но… но есть другие поступки, которые трудно оправдать.
Князь Андрей, видимо желавший смягчить неловкость речи Пьера, приподнялся, сбираясь ехать и подавая знак жене.
Вдруг князь Ипполит поднялся и, знаками рук останавливая всех и прося присесть, заговорил:
– Ah! aujourd"hui on m"a raconte une anecdote moscovite, charmante: il faut que je vous en regale. Vous m"excusez, vicomte, il faut que je raconte en russe. Autrement on ne sentira pas le sel de l"histoire. [Сегодня мне рассказали прелестный московский анекдот; надо вас им поподчивать. Извините, виконт, я буду рассказывать по русски, иначе пропадет вся соль анекдота.]
И князь Ипполит начал говорить по русски таким выговором, каким говорят французы, пробывшие с год в России. Все приостановились: так оживленно, настоятельно требовал князь Ипполит внимания к своей истории.
– В Moscou есть одна барыня, une dame. И она очень скупа. Ей нужно было иметь два valets de pied [лакея] за карета. И очень большой ростом. Это было ее вкусу. И она имела une femme de chambre [горничную], еще большой росту. Она сказала…
Тут князь Ипполит задумался, видимо с трудом соображая.
– Она сказала… да, она сказала: «девушка (a la femme de chambre), надень livree [ливрею] и поедем со мной, за карета, faire des visites». [делать визиты.]
Тут князь Ипполит фыркнул и захохотал гораздо прежде своих слушателей, что произвело невыгодное для рассказчика впечатление. Однако многие, и в том числе пожилая дама и Анна Павловна, улыбнулись.
– Она поехала. Незапно сделался сильный ветер. Девушка потеряла шляпа, и длинны волоса расчесались…
Тут он не мог уже более держаться и стал отрывисто смеяться и сквозь этот смех проговорил:
– И весь свет узнал…
Тем анекдот и кончился. Хотя и непонятно было, для чего он его рассказывает и для чего его надо было рассказать непременно по русски, однако Анна Павловна и другие оценили светскую любезность князя Ипполита, так приятно закончившего неприятную и нелюбезную выходку мсье Пьера. Разговор после анекдота рассыпался на мелкие, незначительные толки о будущем и прошедшем бале, спектакле, о том, когда и где кто увидится.
Способы описания технологий.
Производство - основная область деятельности фирмы. Фирмы используют производственные факторы, которые называются также вводимыми (входными) факторами производства. Например, владелец пекарни использует такие вводимые факторы производства, как труд рабочих, сырье в виде муки и сахара, а также капитал, вложенный в печи, мешалки и другое оборудование для производства такой продукции, как хлеб, пирожки и кондитерские изделия.
Мы можем подразделить производственные факторы на крупные категории - труд, материалы и капитал, каждая из которых включает более узкие группировки. Например, труд как производственный фактор через показатель трудоемкости объединяет как квалифицированный (плотников, инженеров), так и неквалифицированный труд (сельскохозяйственных рабочих), а также предпринимательские усилия руководителей фирмы. К материалам относятся сталь, пластиковые материалы, электричество, вода и любое другое изделие, которое приобретает фирма и превращает в готовый товар. К капиталу относятся здания, оборудование и товарно-материальные ценности.
Множество всех технологически доступных для данной фирмы векторов чистых выпусков называют производственным множеством и обозначают через Y .
ПРОИЗВОДСТВЕННОЕ МНОЖЕСТВО - множество допустимых технологических способов данной экономической системы (X,Y ) , где X - совокупность векторов затрат , а Y - совокупность векторов выпуска .
П. м. характеризуется следующими особенностями: оно замкнуто и выпукло (см. Множество ), векторы затрат обязательно ненулевые (нельзя что-то производить, ничего не затрачивая), компоненты П. м. - затраты и выпуски - нельзя менять местами, ибо производство - необратимый процесс. Выпуклость П. м. показывает, в частности, тот факт, что отдача от перерабатываемых ресурсов при увеличении объема переработки сокращается.
Cвойства производственных множеств
Рассмотрим экономику с l благами. Для конкретной фирмы естественно рассматривать часть из этих товаров как факторы производства и часть - как выпускаемую продукцию. Следует оговориться, что такое деление довольно условно, так как фирма обладает достаточной свободой в выборе ассортимента производимой продукции и структуры затрат. При описании технологии будем различить выпуск и затраты, представляя последние как выпуск со знаком минус. Для удобства представления технологии продукцию, которая и не затрачивается и не выпускается фирмой, будем относить к ее выпуску, причем объем производства этой продукции считаем равным 0. В принципе не исключена ситуация, в которой продукт, производимый фирмой, также потребляется ею в процессе производства. В этом случае мы будем рассматривать только чистый выпуск данного продукта, т. е. его выпуск минус затраты.
Пусть число факторов производства равно n, а число видов выпускаемой продукции равно m, так что l = m + n. Обозначим вектор затрат (по абсолютной величине) через r 2 Rn+, а объемы выпусков через y 2 Rm+
Вектор (−r, yo) будем называть вектором чистых выпусков. Совокупность всех технологически допустимых векторов чистых выпусков y = (−r, yo) составляет технологическое множество Y . Таким образом, в рассматриваемом случае любое технологическое множество - это подмножество Rn − × Rm+
Такое описание производства носит общий характер. При этом можно не придерживаться жесткого деления благ на продукты и факторы производства: одно и то же благо может при одной технологии затрачиваться, а при другой - производится.
Опишем свойства технологических множеств, в терминах которых обычно дается описание конкретных классов технологий.
1. Непустота. Технологическое множество Y непусто. Это свойство означает принципиальную возможность осуществления производственной деятельности.
2. Замкнутость. Технологическое множество Y замкнуто. Это свойство скорее техническое; оно означает, что технологическое множество содержит свою границу, и предел любой последовательности технологически допустимых векторов чистого выпуска также является технологически допустимым вектором чистых выпусков.
3. Свобода расходования. Это свойство можно интерпретировать как наличие возможности производить тот же самый объем выпуска, но посредством больших затрат, или меньший выпуск при тех же затратах.
4. Отсутствие «рога изобилия» (“no free lunch”). если y 2 Y и y > 0, то y = 0. Это свойство означает, что для производства продукции в положительном количестве необходимы затраты в ненулевом объеме.
< _ < 1, тогда y0 2 Y. Иногда это свойство называют (не совсем точно) убывающей отдачей от масштаба. В случае двух благ, когда одно затрачивается, а другое производится, убывающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не возрастает. Если за час вы можете решить в лучшем случае 5 однотипных задач по микроэкономике, то за два часа в условиях убывающей отдачи вы не смогли бы решить более 10 таких задач.
50 . Неубывающая отдача от масштаба: если y 2 Y и y0 = _y, где _ > 1, тогда y0 2 Y.
В случае двух товаров, когда один затрачивается, а другой производится, возрастающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не убывает.
500 . Постоянная отдача от масштаба - ситуация, когда технологической множества удовлетворяет условиям 5 и 50 одновременно, т. е. если y 2 Y и y0 = _y0, тогда y0 2 Y 8_ > 0.
Геометрически постоянная отдача от масштаба означает, что Y является конусом (возможно, не содержащим 0). В случае двух товаров, когда один затрачивается, а другой производится, постоянная отдача означает, что средняя производительность затрачиваемого фактора не меняется при изменении объема производства.
5. Невозрастающая отдача от масштаба: если y 2 Y и y0 = _y, где 0 < _ < 1, тогда y0 2 Y. Иногда это свойство называют (не совсем точно) убывающей отдачей от масштаба. В случае двух благ, когда одно затрачивается, а другое производится, убывающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не возрастает. Если за час вы можете решить в лучшем случае 5 однотипных задач по микроэкономике, то за два часа в условиях убывающей отдачи вы не смогли бы решить более 10 таких задач.
50 . Неубывающая отдача от масштаба: если y 2 Y и y0 = _y, где _ > 1, тогда y0 2 Y. В случае двух товаров, когда один затрачивается, а другой производится, возрастающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не убывает.
500 . Постоянная отдача от масштаба - ситуация, когда технологической множества удовлетворяет условиям 5 и 50 одновременно, т. е. если y 2 Y и y0 = _y0, тогда y0 2 Y 8_ > 0.
Геометрически постоянная отдача от масштаба означает, что Y является конусом (возможно, не содержащим 0).
В случае двух товаров, когда один затрачивается, а другой производится, постоянная отдача означает, что средняя производительность затрачиваемого фактора не меняется при изменении объема производства.
6. Выпуклость: Свойство выпуклости означает возможность «смешивать» технологии в любой пропорции.
7. Необратимость
Пусть из килограмма стали можно произвести 5 подшипников. Необратимость означает, что невозможно произвести из 5-ти подшипников килограмм стали.
8. Аддитивность. если y 2 Y и y0 2 Y , то y + y0 2 Y. Свойство аддитивности означает возможность комбинировать технологии.
9. Допустимость бездеятельности:
Теорема 44:
1) Из невозрастающей отдачи от масштаба и аддитивности технологического множества следует его выпуклость.
2) Из выпуклости технологического множества и допустимости бездеятельности следует невозрастающая отдача от масштаба. (Обратное не всегда верно: при невозрастающей отдаче технология может быть невыпуклой)
3) Технологическое множество обладает свойствами аддитивности и невозрастающей отдачи от масштаба тогда и только тогда, когда оно - выпуклый конус.
Не все допустимые технологии в равной степени важны с экономической точки зрения.
Среди допустимых особо выделяются эффективные технологии. Допустимую технологию y принято называть эффективной, если не существует другой (отличной от нее) допустимой технологии y0 , такой что y0 > y. Очевидно, что такое определение эффективности неявно подразумевает, что все блага являются в определенном смысле желательными. Эффективные технологии составляют эффективную границу технологического множества. При определенных условиях оказывается возможным использовать в анализе эффективную границу вместо всего технологического множества. При этом важно, чтобы для любой допустимой технологии y нашлась эффективная технология y0 , такая что y0 > y. Для того, чтобы это условие было выполнено, требуется, чтобы технологическое множество было замкнутым, и чтобы в пределах технологического множества невозможно было увеличивать до бесконечности выпуск одногоблага, не уменьшая при этом выпуск других благ.
ТЕХНОЛОГИЧЕСКИЙ СПОСОБ - общее понятие, объединяющее два: Т. с. производства (производственный способ, технология ) и Т. с. потребления; совокупность основных характеристик (ингредиентов ) процесса производства (соответственно - потребления ) того или иного продукта . В экономико-математической модели Т. с., или технология (activity), описывается системой присущих ему чисел (вектором ): напр., нормами затрат и выпуска различных ресурсов в единицу времени или в расчете на единицу продукции и т. п., в т. ч. коэффициентами материалоемкости , трудоемкости , фондоемкости , капиталоемкости .
Напр., если x = (x 1 , ..., x m ) - вектор затрат ресурсов (перечисленных под номерами i = 1, 2, ..., m ), а y = (y 1 , ..., y n ) - вектор объемов производства продуктов j= 1, 2, ..., n , то технологиями, технологическими процессами, способами производства можно назвать пары векторов (x,y ). Технологическая допустимость означает здесь возможность получить из затрачиваемых (используемых) ингредиентов вектора x вектор продукции y .
Совокупность всевозможных допустимых технологий (XY ) образует технологическое или производственное множество данной экономической системы .
ВЕКТОР - упорядоченный набор из некоторого количества действительных чисел (таково одно из многих определений - то, которое принято в экономико-математических методах ). Напр., суточный план цеха может быть записан 4-мерным вектором (5, 3, -8, 4), где 5 означает 5 тыс. деталей одного вида, 3 - 3 тыс. деталей второго вида, (-8) - расход металла в т, а последняя компонента, допустим, экономию 4 тыс. кВт. ч электроэнергии. Как видно, число компонент (координат ) В. произвольно (в данном случае план цеха может состоять не из четырех, а из любого другого числа показателей); их недопустимо менять местами; они могут быть как положительными, так и отрицательными.
Векторы можно умножать на действительное число (напр., если увеличить план в 1,2 раза по всем показателям, то получится новый В. с тем же числом компонент). Векторы, содержащие равное число соответственно одноименных аддитивных компонент, можно складывать и вычитать.
Буквенное обозначение В. принято выделять жирным шрифтом (хотя не всегда это соблюдается).
Суммой векторов x = (x 1 ,..., x n) и y = (y 1 , ..., y n ) является также В. (x + y ) = (x 1 + y 1 , ..., x n +y n ).
Скалярным произведением векторов x и y называется число, равное сумме произведений соответствующих компонент этих В.:
Векторы x и y называются ортогональными , если их скалярное произведение равно нулю.
Равенство В. - компонентное, т. е. два В. равны, если равны их соответствующие компоненты.
Вектор 0 - (0, ..., 0) нулевой ;
n -мерный В. - положительный (x > 0), если все его компоненты x i больше нуля, неотрицательный (x ≥ 0), если все его компоненты x i больше 0 или равны нулю, т. е. x i ≤ 0; и полуположительный , если при этом хотя бы одна компонента x i ≥ 0 (обозначение x ≥ 0); если В. имеют равное количество компонент, возможно их упорядочение (полное или частичное), т. е. введение на множестве векторов бинарного отношения “> ”: x > y , x ≥y , x ≥ y в зависимости от того, положительна, полуположительна или неотрицательна разность x – y.
ЗАКОН УБЫВАЮЩЕЙ ОТДАЧИ -утверждение о том, что если расширяется использование какого-либо одного фактора производства и сохраняются при этом затраты всех остальных факторов (они называются фиксированными ), то физический объем предельного продукта , производимого с помощью указанного фактора, станет (по крайней мере, с определенного этапа) убывать.
ПРОИЗВОДСТВЕННЫЙ ЛУЧ - геометрическое место точек, отображающих пропорциональное увеличение количества ресурсов при использовании определенного технологического способа с возрастающей интенсивностью .
Напр., если сочетание 3 ед. капитала (фондов) и 2 ед. труда (т. е. комбинация 3K + 2L ) дает 10 ед. некоторого продукта, то сочетания 6K + 4L , 9K + 6L , дающие соответственно 20 и 30 ед. и т. д., будут лежать на графике на прямой, называемой П. л. или технологическим лучом. При ином сочетании факторов П. л. будет иметь другой наклон. В силу неделимости многих факторов производства количество технологических способов и соответственно П. л. принимается конечным.
Напр., если в угольной лаве работает бригада из трех шахтеров и к ним добавить еще одного, выработка возрастет на четверть, а если добавить пятого, шестого, седьмого, прирост выработки станет уменьшаться, а затем и прекратится совсем: шахтеры в тесноте будут просто мешать друг другу.
Ключевое понятие здесь - предельная производительность труда (более широко - предельная производительность фактора производства δ Y /δ x ). Напр., если рассматриваются два фактора, то при росте затрат одного из них (первого или второго) его предельная производительность падает.
Закон применим на краткосрочном отрезке времени и для данной технологии (ее пересмотр меняет ситуацию).